Basit öğe kaydını göster

dc.contributor.advisorGürkanlı, Ahmet Turan
dc.contributor.authorÖztop, Serap
dc.date.accessioned2020-07-21T21:40:44Z
dc.date.available2020-07-21T21:40:44Z
dc.date.issued1992
dc.identifier.urihttp://libra.omu.edu.tr/tezler/37265.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.12712/27649
dc.descriptionTez (yüksek lisans) -- Ondokuz Mayıs Üniversitesi, 1992en_US
dc.descriptionLibra Kayıt No: 37265en_US
dc.description.abstractDört bölümden oluşan bu çalışmanın ön bilgiler başlığı altındaki 1. Bölümde tezde kullanılan önemli tanım ve teoremler verildi. bölümde önce Beurling’in w ağırlık fonksiyonu kullanılarak bir AW(G)=L1W (G)Ç LPW(G) uzayı ve bu uzayda bir norm tanımlanıp, bunun bir Banach uzayı olduğu gösterildi.Yine bu uzayın bir yarı homojen Banach uzayı ve bazı koşullar altında homojen Banach uzayı olduğu ispatlandı. 3. bölümde AW(G) uzayları arasındaki kapsamaların özellikleri araştırıldı ve bu uzayın kompakt destekli yaklaşık birimleri tartışıldı.Yine w ağırlık fonksiyonu üzerine bazı koşullar yükleyerek AW(G) uzayının Fourier dönüşümü kompakt destekli fonksiyonlardan oluşan yaklaşık biriminin olup olmadığı araştırıldı.Ayrıca bu yaklaşık birimler kullanılarak uzayın bazı özellikleri incelendi. 4. bölümde AW(G) uzayının girişim işlemine göre Banach cebiri olduğu ve bu cebirin yaklaşık birimsele sahip olduğu gösterilerek idealleri incelendi.Yine bu uzayın elemanlarının çarpanlara ayrılıp ayrılmadığı araştırıldı.en_US
dc.formatIII, 45 y. ; 30 sm.en_US
dc.language.isoturen_US
dc.publisherOndokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectUzaylar (Matematik)en_US
dc.subject.otherTEZ YÜK LİS Ö99a 1992en_US
dc.titleAğırlıklı L1 (G) nLp uzayları ve bazı özellikleri / Serap Öztop; Danışman A. Turan Gürkanlı.en_US
dc.typemasterThesisen_US
dc.contributor.departmentOMÜ, Fen Bilimleri Enstitüsü, Matematik Anabilim Dalıen_US
dc.relation.publicationcategoryTezen_US]


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster