Publication:
A Novel SMOTE-Based Resampling Technique Through Noise Detection and the Boosting Procedure

dc.authorscopusid57194769905
dc.authorscopusid12766595200
dc.authorwosidCengiz, Mehmet/Agz-9391-2022
dc.authorwosidSağlam, Fatih/Aaa-4146-2022
dc.contributor.authorSaglam, Fatih
dc.contributor.authorCengiz, Mehmet Ali
dc.contributor.authorIDSağlam, Fatih/0000-0002-2084-2008
dc.date.accessioned2025-12-11T01:08:34Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Saglam, Fatih; Cengiz, Mehmet Ali] Ondokuz Mays Univ, Fac Art & Sci, Dept Stat, Samsun, Turkeyen_US
dc.descriptionSağlam, Fatih/0000-0002-2084-2008en_US
dc.description.abstractMost of the classification methods assume that the numbers of class observations are balanced. In such cases, models are predicted by giving biased weight to the the class with more observations. Therefore, the classifiers ignore the class with smaller number of observations and the majority class makes biased predictions. There are some advised performance measures to be used in datasets, as well as recommended approaches to solve class imbalance problem. One of the most widely used methods is resampling method. In this study, the difficulties relevant to random oversampling (ROS) and synthetic minority oversampling technique (SMOTE), which are some of the oversampling methods, are discussed. This study aims to propose a combination of a new noise detection method and SMOTE to overcome those difficulties. Using the boosting procedure in ensemble algo-rithms, noise detection is possible with the proposed SMOTE with boosting (SMOTEWB) method, which makes use of this information to determine the appropriate number of neighbors for each observation within SMOTE algorithm.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.eswa.2022.117023
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.scopus2-s2.0-85127353407
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2022.117023
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41577
dc.identifier.volume200en_US
dc.identifier.wosWOS:000794359900008
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOversamplingen_US
dc.subjectSMOTEen_US
dc.subjectClass Imbalanceen_US
dc.subjectNoisy Dataen_US
dc.titleA Novel SMOTE-Based Resampling Technique Through Noise Detection and the Boosting Procedureen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files