Publication:
A Novel SMOTE-Based Resampling Technique Through Noise Detection and the Boosting Procedure

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Research Projects

Organizational Units

Journal Issue

Abstract

Most of the classification methods assume that the numbers of class observations are balanced. In such cases, models are predicted by giving biased weight to the the class with more observations. Therefore, the classifiers ignore the class with smaller number of observations and the majority class makes biased predictions. There are some advised performance measures to be used in datasets, as well as recommended approaches to solve class imbalance problem. One of the most widely used methods is resampling method. In this study, the difficulties relevant to random oversampling (ROS) and synthetic minority oversampling technique (SMOTE), which are some of the oversampling methods, are discussed. This study aims to propose a combination of a new noise detection method and SMOTE to overcome those difficulties. Using the boosting procedure in ensemble algo-rithms, noise detection is possible with the proposed SMOTE with boosting (SMOTEWB) method, which makes use of this information to determine the appropriate number of neighbors for each observation within SMOTE algorithm.

Description

Sağlam, Fatih/0000-0002-2084-2008

Citation

WoS Q

Q1

Scopus Q

Q1

Source

Expert Systems With Applications

Volume

200

Issue

Start Page

End Page

Endorsement

Review

Supplemented By

Referenced By