Publication:
Estimating Chlorophyll Concentration Index in Sugar Beet Leaves Using an Artificial Neural Network

dc.authorscopusid35279274300
dc.authorscopusid57196017602
dc.authorscopusid16303214600
dc.authorscopusid21743556600
dc.contributor.authorÇalişkan, O.
dc.contributor.authorKurt, Dursun
dc.contributor.authorÇamaş, N.
dc.contributor.authorOdabaş, M.S.
dc.date.accessioned2020-06-21T12:19:13Z
dc.date.available2020-06-21T12:19:13Z
dc.date.issued2020
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Çalişkan] Ömer, Department of Plant and Animal Production, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Kurt] Dursun, Department of Plant and Animal Production, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Çamaş] Necdet, Department of Plant and Animal Production, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Odabaş] Mehmet Serhat, Faculty of Agriculture, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractThe artificial neural network (ANN) method was used in this study for predicting sugar beet (Beta vulgaris L.) leaf chlorophyll concentration from leaves. The experiment was carried out in field conditions in 2015-2016. In this research, symbiotic mychorrhizae as Bio-one (Azotobacter vinelandii and Clostridium pasteurianum) in commercial preparation (10 kg/da) and ammonium sulfate (40 kg/da) were use used as a fertilizer. In order to measure the leaves’ chlorophyll concentration we used a SPAD-502 chlorophyll meter. Artificial neural network, red, green, and blue components of the images were used which was developed to predict chlorophyll concentration. The results showed the ANN model able to estimate sugar beet leaf chlorophyll concentration. The coefficient of determination (R2) was found to be 0.98 while mean square error (MSE) was obtained as 0.007 from validation. © 2020, HARD Publishing Company. All rights reserved.en_US
dc.identifier.doi10.15244/pjoes/95031
dc.identifier.endpage31en_US
dc.identifier.issn1230-1485
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85074341131
dc.identifier.scopusqualityQ3
dc.identifier.startpage25en_US
dc.identifier.urihttps://doi.org/10.15244/pjoes/95031
dc.identifier.volume29en_US
dc.identifier.wosWOS:000492020300004
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherHARD Publishing Company Post-Office Box Olstyn 5 10-718en_US
dc.relation.ispartofPolish Journal of Environmental Studiesen_US
dc.relation.journalPolish Journal of Environmental Studiesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectBeta Vulgarisen_US
dc.subjectPrecision Agricultureen_US
dc.subjectSPAD Meteren_US
dc.subjectSugarbeeten_US
dc.titleEstimating Chlorophyll Concentration Index in Sugar Beet Leaves Using an Artificial Neural Networken_US
dc.typeArticleen_US
dspace.entity.typePublication

Files