Publication: Estimating Chlorophyll Concentration Index in Sugar Beet Leaves Using an Artificial Neural Network
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Abstract
The artificial neural network (ANN) method was used in this study for predicting sugar beet (Beta vulgaris L.) leaf chlorophyll concentration from leaves. The experiment was carried out in field conditions in 2015-2016. In this research, symbiotic mychorrhizae as Bio-one (Azotobacter vinelandii and Clostridium pasteurianum) in commercial preparation (10 kg/da) and ammonium sulfate (40 kg/da) were use used as a fertilizer. In order to measure the leaves’ chlorophyll concentration we used a SPAD-502 chlorophyll meter. Artificial neural network, red, green, and blue components of the images were used which was developed to predict chlorophyll concentration. The results showed the ANN model able to estimate sugar beet leaf chlorophyll concentration. The coefficient of determination (R2) was found to be 0.98 while mean square error (MSE) was obtained as 0.007 from validation. © 2020, HARD Publishing Company. All rights reserved.
Description
Citation
WoS Q
Q4
Scopus Q
Q3
Source
Polish Journal of Environmental Studies
Volume
29
Issue
1
Start Page
25
End Page
31
