Publication: Reviewing and Designing Pre-Processing Units for RBF Networks: Initial Structure Identification and Coarse-Tuning of Free Parameters
| dc.authorscopusid | 35781802800 | |
| dc.authorscopusid | 22433319300 | |
| dc.authorscopusid | 7801457993 | |
| dc.contributor.author | Kayhan, Gokhan | |
| dc.contributor.author | Özdemir, A.E. | |
| dc.contributor.author | Eminoǧlu, I. | |
| dc.date.accessioned | 2020-06-21T14:05:25Z | |
| dc.date.available | 2020-06-21T14:05:25Z | |
| dc.date.issued | 2013 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Kayhan] Gökhan, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Özdemir] Ali Ekber, Ordu Üniversitesi, Ordu, Turkey; [Eminoǧlu] Ilyas, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey | en_US |
| dc.description.abstract | This paper reviews some frequently used methods to initialize an radial basis function (RBF) network and presents systematic design procedures for pre-processing unit(s) to initialize RBF network from available input-output data sets. The pre-processing units are computationally hybrid two-step training algorithms that can be named as (1) construction of initial structure and (2) coarse-tuning of free parameters. The first step, the number, and the locations of the initial centers of RBF network can be determined. Thus, an orthogonal least squares algorithm and a modified counter propagation network can be employed for this purpose. In the second step, a coarse-tuning of free parameters is achieved by using clustering procedures. Thus, the Gustafson-Kessel and the fuzzy C-means clustering methods are evaluated for the coarse-tuning. The first two-step behaves like a pre-processing unit for the last stage (or fine-tuning stage-a gradient descent algorithm). The initialization ability of the proposed four pre-processing units (modular combination of the existing methods) is compared with three non-linear benchmarks in terms of root mean square errors. Finally, the proposed hybrid pre-processing units may initialize a fairly accurate, IF-THEN-wise readable initial model automatically and efficiently with a minimum user inference. © 2012 Springer-Verlag London Limited. | en_US |
| dc.identifier.doi | 10.1007/s00521-012-1053-8 | |
| dc.identifier.endpage | 1666 | en_US |
| dc.identifier.issn | 0941-0643 | |
| dc.identifier.issn | 1433-3058 | |
| dc.identifier.scopus | 2-s2.0-84878584682 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 1655 | en_US |
| dc.identifier.uri | https://doi.org/10.1007/s00521-012-1053-8 | |
| dc.identifier.volume | 22 | en_US |
| dc.identifier.wos | WOS:000319769300040 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer London Ltd | en_US |
| dc.relation.ispartof | Neural Computing and Applications | en_US |
| dc.relation.journal | Neural Computing & Applications | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Counter Propagation Network (CPN) | en_US |
| dc.subject | Fuzzy C-Means (FCM) | en_US |
| dc.subject | Gustafson-Kessel (GK) | en_US |
| dc.subject | Hybrid Training and Modeling | en_US |
| dc.subject | Partition Validations | en_US |
| dc.subject | Radial Basis Function (RBF) | en_US |
| dc.title | Reviewing and Designing Pre-Processing Units for RBF Networks: Initial Structure Identification and Coarse-Tuning of Free Parameters | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
