Publication:
Reviewing and Designing Pre-Processing Units for RBF Networks: Initial Structure Identification and Coarse-Tuning of Free Parameters

dc.authorscopusid35781802800
dc.authorscopusid22433319300
dc.authorscopusid7801457993
dc.contributor.authorKayhan, Gokhan
dc.contributor.authorÖzdemir, A.E.
dc.contributor.authorEminoǧlu, I.
dc.date.accessioned2020-06-21T14:05:25Z
dc.date.available2020-06-21T14:05:25Z
dc.date.issued2013
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kayhan] Gökhan, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Özdemir] Ali Ekber, Ordu Üniversitesi, Ordu, Turkey; [Eminoǧlu] Ilyas, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractThis paper reviews some frequently used methods to initialize an radial basis function (RBF) network and presents systematic design procedures for pre-processing unit(s) to initialize RBF network from available input-output data sets. The pre-processing units are computationally hybrid two-step training algorithms that can be named as (1) construction of initial structure and (2) coarse-tuning of free parameters. The first step, the number, and the locations of the initial centers of RBF network can be determined. Thus, an orthogonal least squares algorithm and a modified counter propagation network can be employed for this purpose. In the second step, a coarse-tuning of free parameters is achieved by using clustering procedures. Thus, the Gustafson-Kessel and the fuzzy C-means clustering methods are evaluated for the coarse-tuning. The first two-step behaves like a pre-processing unit for the last stage (or fine-tuning stage-a gradient descent algorithm). The initialization ability of the proposed four pre-processing units (modular combination of the existing methods) is compared with three non-linear benchmarks in terms of root mean square errors. Finally, the proposed hybrid pre-processing units may initialize a fairly accurate, IF-THEN-wise readable initial model automatically and efficiently with a minimum user inference. © 2012 Springer-Verlag London Limited.en_US
dc.identifier.doi10.1007/s00521-012-1053-8
dc.identifier.endpage1666en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.scopus2-s2.0-84878584682
dc.identifier.scopusqualityQ1
dc.identifier.startpage1655en_US
dc.identifier.urihttps://doi.org/10.1007/s00521-012-1053-8
dc.identifier.volume22en_US
dc.identifier.wosWOS:000319769300040
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.relation.journalNeural Computing & Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCounter Propagation Network (CPN)en_US
dc.subjectFuzzy C-Means (FCM)en_US
dc.subjectGustafson-Kessel (GK)en_US
dc.subjectHybrid Training and Modelingen_US
dc.subjectPartition Validationsen_US
dc.subjectRadial Basis Function (RBF)en_US
dc.titleReviewing and Designing Pre-Processing Units for RBF Networks: Initial Structure Identification and Coarse-Tuning of Free Parametersen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files