Publication: Reviewing and Designing Pre-Processing Units for RBF Networks: Initial Structure Identification and Coarse-Tuning of Free Parameters
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This paper reviews some frequently used methods to initialize an radial basis function (RBF) network and presents systematic design procedures for pre-processing unit(s) to initialize RBF network from available input-output data sets. The pre-processing units are computationally hybrid two-step training algorithms that can be named as (1) construction of initial structure and (2) coarse-tuning of free parameters. The first step, the number, and the locations of the initial centers of RBF network can be determined. Thus, an orthogonal least squares algorithm and a modified counter propagation network can be employed for this purpose. In the second step, a coarse-tuning of free parameters is achieved by using clustering procedures. Thus, the Gustafson-Kessel and the fuzzy C-means clustering methods are evaluated for the coarse-tuning. The first two-step behaves like a pre-processing unit for the last stage (or fine-tuning stage-a gradient descent algorithm). The initialization ability of the proposed four pre-processing units (modular combination of the existing methods) is compared with three non-linear benchmarks in terms of root mean square errors. Finally, the proposed hybrid pre-processing units may initialize a fairly accurate, IF-THEN-wise readable initial model automatically and efficiently with a minimum user inference. © 2012 Springer-Verlag London Limited.
Description
Citation
WoS Q
Scopus Q
Q1
Source
Neural Computing and Applications
Volume
22
Issue
Start Page
1655
End Page
1666
