Publication:
On Lipschitz-Lorentz Spaces and Their Zygmund Classes

dc.authorscopusid24176919100
dc.authorscopusid16480210200
dc.contributor.authorEryilmaz, İ.
dc.contributor.authorDuyar, C.
dc.date.accessioned2020-06-21T14:48:04Z
dc.date.available2020-06-21T14:48:04Z
dc.date.issued2010
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Eryilmaz] I., Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Duyar] Cenap, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractLet G be a metrizable locally compact abelian group. We prove that (L1(G), lip (α, pq)), lip (α, pq), (L1(G), Lip (α, pq)) and Lip(α, pq) are isometrically isomorphic, where Lip(α, pq) and lip (α, pq) denote the Lipschitz-Lorentz spaces defined on G, (L1(G), A) is the space of multipliers from L1(G) to A and lip (α, pq) denotes the relative completion of lip (α, pq). Also, we characterize the space of multipliers from Lorentz spaces to the Lipschitz-Lorentz-Zygmund classes LΛ*(α, pq; G) and Lλ*(α, pq; G).en_US
dc.identifier.endpage169en_US
dc.identifier.issn1303-5010
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-77954021669
dc.identifier.scopusqualityQ3
dc.identifier.startpage159en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12712/17887
dc.identifier.volume39en_US
dc.identifier.wosWOS:000280830400003
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherHacettepe Universityen_US
dc.relation.ispartofHacettepe Journal of Mathematics and Statisticsen_US
dc.relation.journalHacettepe Journal of Mathematics and Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLipschitz Spacesen_US
dc.subjectLorentz Spacesen_US
dc.subjectMultipliersen_US
dc.subjectRelative Completionen_US
dc.subjectTranslation Operatoren_US
dc.subjectZygmund Classesen_US
dc.titleOn Lipschitz-Lorentz Spaces and Their Zygmund Classesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files