Publication: On Lipschitz-Lorentz Spaces and Their Zygmund Classes
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Let G be a metrizable locally compact abelian group. We prove that (L1(G), lip (α, pq)), lip (α, pq), (L1(G), Lip (α, pq)) and Lip(α, pq) are isometrically isomorphic, where Lip(α, pq) and lip (α, pq) denote the Lipschitz-Lorentz spaces defined on G, (L1(G), A) is the space of multipliers from L1(G) to A and lip (α, pq) denotes the relative completion of lip (α, pq). Also, we characterize the space of multipliers from Lorentz spaces to the Lipschitz-Lorentz-Zygmund classes LΛ*(α, pq; G) and Lλ*(α, pq; G).
Description
Citation
WoS Q
Q2
Scopus Q
Q3
Source
Hacettepe Journal of Mathematics and Statistics
Volume
39
Issue
2
Start Page
159
End Page
169
