Publication: Çarpım İşlemci Teorisinin Spin-1 İçeren Sistemlere Genelleştirilmesi ve Bazı Çoklu-Kuantum NMR Deneylerine Uygulamaları
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Abstract
Çarpım işlemci teorisi, zayıf çiftlenimli spin sistemleri için çok?pulslu NMR (Nükleer Manyetik Rezonans) deneylerinin analitik olarak incelenmesinde yaygın olarak kullanılan bir yöntemdir. İlk defa bu çalışmada çarpım işlemci teorisi IS (I=1/2, S=1) spin sistemi için genelleştirilmiş ve bazı çok?kuantum geçişi içeren NMR deneylerine uygulanmıştır. IS (I=½ ve S=1) spin sistemi 4 × 9 = 36 tane çarpım işlemci içermektedir. Bu çalışmada ( 2 2 ) x y S ? S açısal momentum işlemcisi, 2 x S ve 2 y S olarak iki ayrı bağımsız çarpım işlemci olarak ele alınmıştır. Bu durumda 2 x S , 2 x x I S , 2 y x I S , 2 z x I S , 2 y S , 2 x y I S , 2 y y I S ve 2 z y I S gibi yeni çarpım işlemciler ortaya çıkmıştır. IS (I=½, S=1) spin sistemi için tam (eksiksiz, bir bütün olarak) çarpım işlemci teorisi oluşturulurken, gelişimleri bilinmeyen 18 tane çarpım işlemcinin spin?spin çiftlenim Hamiltonyeni, 6 tane açısal momentum işlemcinin ise kimyasal kayma ve puls Hamiltonyenleri altındaki gelişimleri hesaplanmıştır. Böylece IS (I=½ ve S=1) spin sistemi için çarpım işleci teorisi tamamlanmıştır. ISn (I=½, S=1; n=1,2,3) gibi spin?1 içeren sistemlerin çok?pulslu NMR deneylerinin çarpım işlemci tekniği kullanılarak incelenmesi oldukça zordur. Bu nedenle IS (I=½, S=1) spin sistemi için tam bir Mathematica programı yazılmıştır. Bu program kullanılarak ISn (I=½, S=1; n=1, 2, 3) spin sistemleri için; 2H (döteryum) algılayan, düzenleme (editing) pulsu ve çoklu?kuantum geçişleri içeren MAXY, 2B DEPT?HMQC ve 2B MAXY?HMQC NMR deneyleri analitik olarak incelenmiştir. Deneyler sonucunda teorik olarak SİB sinyallerini temsil eden ifadeler elde edilmiştir. Elde edilen sonuçlardan hareketle karmaşık moleküllerde CD, CD2 ve CD3 gruplarını ayırt etmek için deneysel önerilerde bulunulmuştur. Analitik işlemler esnasında bazı gözlenebilir çarpım işlemcilerin izlerinin hesaplanması için Mathematica'da iz hesaplayan bir program yazılmıştır. Çarpım işlemci teorisi ( 1 1 2 3 1 2) 2 IS I ?S? I = I ? = 1 ; S = S? = ; n = , , ; m = , n m çok?spinli sistem için 2H algılayan 2B MAXY?JRES NMR deneyine de uygulanmış ve böylelikle CDCD CD2CD, CD3CD, CD2CD2 ve CD3CD2 gruplarına ait teorik SİB ifadeleri elde edilmiştir. Elde edilen sonuçlardan hareketle spektrum simülasyonları çizdirilmiş ve bir takım deneysel önerilerde bulunulmuştur. Anahtar Kelimeler: Spin?1, Yoğunluk matrisi, Çarpım işlemci teorisi, NMR, MAXY NMR, 2B DEPT?HMQC NMR, 2B MAXY?HMQC NMR, 2B MAXY?JRES NMR.
The product operator theory is widely used for analytical description of multi? pulse NMR (Nuclear Magnetic Resonance) experiments for weakly coupled spin systems. In this study, first of all, a complete product operator theory for IS (I=1/2, S=1) spin system has been obtained and applied to some NMR experiments including multi? quantum coherence. IS (I=1/2, S=1) spin system includes 4 × 9 = 36 product operators. In this study, ( 2 2 ) x y S ? S angular momentum operator has been separated into two spin operators, 2 x S and 2 y S and it has been used as independent operatros. In this case, there exists new product operators such as 2 x S , 2 x x I S , 2 y x I S , 2 z x I S , 2 y S , 2 x y I S , 2 y y I S and 2 z y I S . In order to obtain a complete product operator theory for IS (I=1/2, S=1) spin system, evolutions of 18 product operators under the spin?spin coupling Hamiltonian, evolutions of 6 angular momentum operators under the chemical shift and pulse Hamiltonian were derived. Thus, the product operator theory for IS (I=1/2, S=1) spin system was completed. Analytical descriptions of multi?pulse NMR experiments for ISn (I=1/2, S=1; n=1,2,3) spin systems are too complicated. In order to overcome this problem, a complete computer program in Mathematica has been written out for ISn (I=1/2, S=1; n=1,2,3) spin systems. By this program, analytical descriptions of MAXY, 2D DEPT? HMQC and 2D MAXY?HMQC NMR experiments; all of which include editing pulses, multi?quantum coherences and 2H observations; were performed for ISn (I=1/2, S=1; n=1,2,3) spin systems. At the end of the experiments, the theoretical results representing the FID signals were attained for all spin systems and thus a number of experimental suggestions were presented for the identifications of CD, CD2 and CD3 groups in complex molecules. During the analytical descriptions, a Mathematica program has also been written out for the calculations of the trace values of some observable product operators. Another application of the product operator theory was made to 2D MAXY? JRES NMR experiment for ( 1 1 2 3 1 2) 2 IS I ?S? I = I ? = 1 ; S = S? = ; n = , , ; m = , n m multi? spin systems. Then, the theoretical FID results were developed for CDCD, CD2CD, CD3CD, CD2CD2 ve CD3CD2 groups. The spectral simulations of each group were obtained based on the therotical results and some experimental suggestions were made. Keywords: Spin?1, density matrix, product operator theory, NMR, MAXY NMR, 2D DEPT?HMQC NMR, 2D MAXY?HMQC NMR, 2D MAXY?JRES NMR.
The product operator theory is widely used for analytical description of multi? pulse NMR (Nuclear Magnetic Resonance) experiments for weakly coupled spin systems. In this study, first of all, a complete product operator theory for IS (I=1/2, S=1) spin system has been obtained and applied to some NMR experiments including multi? quantum coherence. IS (I=1/2, S=1) spin system includes 4 × 9 = 36 product operators. In this study, ( 2 2 ) x y S ? S angular momentum operator has been separated into two spin operators, 2 x S and 2 y S and it has been used as independent operatros. In this case, there exists new product operators such as 2 x S , 2 x x I S , 2 y x I S , 2 z x I S , 2 y S , 2 x y I S , 2 y y I S and 2 z y I S . In order to obtain a complete product operator theory for IS (I=1/2, S=1) spin system, evolutions of 18 product operators under the spin?spin coupling Hamiltonian, evolutions of 6 angular momentum operators under the chemical shift and pulse Hamiltonian were derived. Thus, the product operator theory for IS (I=1/2, S=1) spin system was completed. Analytical descriptions of multi?pulse NMR experiments for ISn (I=1/2, S=1; n=1,2,3) spin systems are too complicated. In order to overcome this problem, a complete computer program in Mathematica has been written out for ISn (I=1/2, S=1; n=1,2,3) spin systems. By this program, analytical descriptions of MAXY, 2D DEPT? HMQC and 2D MAXY?HMQC NMR experiments; all of which include editing pulses, multi?quantum coherences and 2H observations; were performed for ISn (I=1/2, S=1; n=1,2,3) spin systems. At the end of the experiments, the theoretical results representing the FID signals were attained for all spin systems and thus a number of experimental suggestions were presented for the identifications of CD, CD2 and CD3 groups in complex molecules. During the analytical descriptions, a Mathematica program has also been written out for the calculations of the trace values of some observable product operators. Another application of the product operator theory was made to 2D MAXY? JRES NMR experiment for ( 1 1 2 3 1 2) 2 IS I ?S? I = I ? = 1 ; S = S? = ; n = , , ; m = , n m multi? spin systems. Then, the theoretical FID results were developed for CDCD, CD2CD, CD3CD, CD2CD2 ve CD3CD2 groups. The spectral simulations of each group were obtained based on the therotical results and some experimental suggestions were made. Keywords: Spin?1, density matrix, product operator theory, NMR, MAXY NMR, 2D DEPT?HMQC NMR, 2D MAXY?HMQC NMR, 2D MAXY?JRES NMR.
Description
Tez (doktora) -- Ondokuz Mayıs Üniversitesi, 2007
Libra Kayıt No: 12673
Libra Kayıt No: 12673
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
166
