Publication: Fourier Dönüşüm Metodunu Kullanarak İki-Merkezli Nükleer-çekim İntegrallerinin Hesaplanması
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Abstract
FOURIER DÖNÜŞÜM METODUNU KULLANARAK İKİ-MERKEZLİ NÜKLEER-ÇEKİM İNTEGRALLERİNİN HESAPLANMASI ÖZET Moleküler yapının incelenmesi için moleküler orbital teoride kullanılan yaklaşık yöntemlerden biri de Hartree-Fock-Roothaan (HFR) Yöntemidir. Bu yöntemin kullanımı sırasında atomik orbital bazında çok sayıda moleküler integral ortaya çıkmaktadır. Slater tip orbitaller (STO) bazında bu moleküler integrallerin hesabı son zamanlarda yenilenen ilgi kazanmıştır. Bu çalışmada, Gegenbauer polinomları ve Fourier dönüşüm metodu kullanılarak STO' lar bazında iki merkezli nükleer-çekim integralleri için analitik ifadeler türetilmiştir. İlk olarak, hipergeometrik fonksiyonlar cinsinden Gegenbauer polinomları elde edilmiştir. İkinci olarak, bazı matematiksel ifadeler ve Gegenbauer polinomları kullanılarak iki merkezli nükleer-çekim integralleri STO'lar cinsinden elde edilmiştir. Anahtar Kelimeler: Slater tip orbitaller, Gegenbauer polinomları, iki-merkezli nükleer çekim integralleri.
Ill TWO-CENTER NUCLEAR ATTRACTION INTEGRALS BY USING FOURIER TRANSFORM METHOD ABSTRACT For examination of molecular structures, one of the approximate methods used in molecular orbital theory is Hartree-Fock-Roothaan (HFR) method. In using this method a large number of molecular integrals occur. The calculation of this moleküler integrals over Slater type orbitals (STO) has recently gained a renewed interest. In this study, we shall suggest analytical expressions for two-center nuclear attraction integrals over STOs by using Fourier transform method and Gegenbauer polynomials. It will be presented in this paper: Firstly, the Gegenbauer polynomials are obtained in terms of hypergeometric functions. Secondly, two-center nuclear attraction integrals can be obtained analytically in terms of STOs by using Gegenbauer polynomials and some mathematical tools. Key Words: Slater Type Orbitals, Gegenbauer Polynomials, and Two-center nuclear- attraction integrals.
Ill TWO-CENTER NUCLEAR ATTRACTION INTEGRALS BY USING FOURIER TRANSFORM METHOD ABSTRACT For examination of molecular structures, one of the approximate methods used in molecular orbital theory is Hartree-Fock-Roothaan (HFR) method. In using this method a large number of molecular integrals occur. The calculation of this moleküler integrals over Slater type orbitals (STO) has recently gained a renewed interest. In this study, we shall suggest analytical expressions for two-center nuclear attraction integrals over STOs by using Fourier transform method and Gegenbauer polynomials. It will be presented in this paper: Firstly, the Gegenbauer polynomials are obtained in terms of hypergeometric functions. Secondly, two-center nuclear attraction integrals can be obtained analytically in terms of STOs by using Gegenbauer polynomials and some mathematical tools. Key Words: Slater Type Orbitals, Gegenbauer Polynomials, and Two-center nuclear- attraction integrals.
Description
Tez (yüksek lisans) -- Ondokuz Mayıs Üniversitesi, 2004
Libra Kayıt No: 20905
Libra Kayıt No: 20905
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
58
