• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of the NTEV signal problem via the incorporation of s-transform features and different types of neural network

Tarih

2018

Yazar

Yusoh M.A.T.M.
Yalcin T.
Abidin A.F.
Yasin Z.M.
Dahlan N.Y.
Mohammad H.
Rahimullah B.N.S.

Üst veri

Tüm öğe kaydını göster

Özet

Classification of power quality (PQ) disturbance on the commercial building is one of the most important parts in monitoring, identifying and mitigating of PQ disturbance to avoid misunderstanding the behavior of events. A novel on the Neutral to Earth Voltage (NTEV) classification using S-transform (ST) and different type of neural networks are proposed. The types of a neural network composed of general regression neural network (GRNN), probabilistic neural network (PNN) and radial basis function neural network (RBFNN). NTEV signals are needed to analyse using ST to extract their features that used as an input for the neural network classification. Finally, the GRNN, PNN, and RBFNN are trained and tested using 100 and 150 samples respectively. The performance of GRNN, PNN, and RBFNN are compared in which to identify the best technique in classification the NTEV. © 2018 Universiti Teknikal Malaysia Melaka. All rights reserved.

Kaynak

Journal of Telecommunication, Electronic and Computer Engineering

Cilt

10

Sayı

Jan.13

Bağlantı

https://hdl.handle.net/20.500.12712/5420

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.