• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of the NTEV signal problem via the incorporation of s-transform features and different types of neural network

Date

2018

Author

Yusoh M.A.T.M.
Yalcin T.
Abidin A.F.
Yasin Z.M.
Dahlan N.Y.
Mohammad H.
Rahimullah B.N.S.

Metadata

Show full item record

Abstract

Classification of power quality (PQ) disturbance on the commercial building is one of the most important parts in monitoring, identifying and mitigating of PQ disturbance to avoid misunderstanding the behavior of events. A novel on the Neutral to Earth Voltage (NTEV) classification using S-transform (ST) and different type of neural networks are proposed. The types of a neural network composed of general regression neural network (GRNN), probabilistic neural network (PNN) and radial basis function neural network (RBFNN). NTEV signals are needed to analyse using ST to extract their features that used as an input for the neural network classification. Finally, the GRNN, PNN, and RBFNN are trained and tested using 100 and 150 samples respectively. The performance of GRNN, PNN, and RBFNN are compared in which to identify the best technique in classification the NTEV. © 2018 Universiti Teknikal Malaysia Melaka. All rights reserved.

Source

Journal of Telecommunication, Electronic and Computer Engineering

Volume

10

Issue

Jan.13

URI

https://hdl.handle.net/20.500.12712/5420

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.