Basit öğe kaydını göster

dc.contributor.authorZaborski, Daniel
dc.contributor.authorAli, Muhammad
dc.contributor.authorEyduran, Ecevit
dc.contributor.authorGrzesiak, Wilhelm
dc.contributor.authorTariq, Mohammad Masood
dc.contributor.authorAbbas, Ferhat
dc.contributor.authorThink, Cem
dc.date.accessioned2020-06-21T12:27:23Z
dc.date.available2020-06-21T12:27:23Z
dc.date.issued2019
dc.identifier.issn0030-9923
dc.identifier.urihttps://doi.org/10.17582/journal.pjz/2019.51.2.421.431
dc.identifier.urihttps://hdl.handle.net/20.500.12712/10918
dc.descriptionWOS: 000461147800004en_US
dc.description.abstractIn this study, an attempt was made at predicting the values of selected reproductive parameters in Harnai sheep using different data mining algorithms (artificial neural networks - ANN, classification and regression trees - CART, chi-square automatic interaction detector - CHAID and multivariate adaptive regression splines - MARS) and indicating the most influential predictors of these traits. A total of 382 reproduction records including three predictors (month of lambing - MOL, age at first lambing - AFL and lambing weight - LW) and seven dependent (output) variables (services per conception - SPC, service period - SP, lambing interval - LI, twinning rate - TR, gestation length - GL, breeding efficiency - BE and fertility rate - FR) were used. A 10-fold cross-validation was applied to train and evaluate the models. The highest correlation coefficients (r) were found for LI (0.18 - 0.29; P <= 0.001), GL (0.05 - 0.21; P <= 0.001 to P>0.05) and FR (0.11 - 0.26; P <= 0.001 to P <= 0.05). For the remaining output variables, it was usually lower than 0.10. The smallest values of SDratio (0.96 - 1.06) were found for LI, GL and FR. For the rest of the output variables, it was usually above 1.00. The measures of predictor importance to ANN, CART, CHAID and MARS were generally low. In conclusion, the applied method of reproductive parameters prediction was rather ineffective, indicating that more powerful input variables are required to obtain better prediction results.en_US
dc.language.isoengen_US
dc.publisherZoological Soc Pakistanen_US
dc.relation.isversionof10.17582/journal.pjz/2019.51.2.421.431en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectReproductive traitsen_US
dc.subjectHarnai sheepen_US
dc.subjectArtificial neural networksen_US
dc.subjectData miningen_US
dc.subjectMultivariate adaptive regression splinesen_US
dc.titlePrediction of Selected Reproductive Traits of Indigenous Harnai Sheep under the Farm Management System via various Data Mining Algorithmsen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume51en_US
dc.identifier.issue2en_US
dc.identifier.startpage421en_US
dc.identifier.endpage431en_US
dc.relation.journalPakistan Journal of Zoologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster