• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of Selected Reproductive Traits of Indigenous Harnai Sheep under the Farm Management System via various Data Mining Algorithms

Tarih

2019

Yazar

Zaborski, Daniel
Ali, Muhammad
Eyduran, Ecevit
Grzesiak, Wilhelm
Tariq, Mohammad Masood
Abbas, Ferhat
Think, Cem

Üst veri

Tüm öğe kaydını göster

Özet

In this study, an attempt was made at predicting the values of selected reproductive parameters in Harnai sheep using different data mining algorithms (artificial neural networks - ANN, classification and regression trees - CART, chi-square automatic interaction detector - CHAID and multivariate adaptive regression splines - MARS) and indicating the most influential predictors of these traits. A total of 382 reproduction records including three predictors (month of lambing - MOL, age at first lambing - AFL and lambing weight - LW) and seven dependent (output) variables (services per conception - SPC, service period - SP, lambing interval - LI, twinning rate - TR, gestation length - GL, breeding efficiency - BE and fertility rate - FR) were used. A 10-fold cross-validation was applied to train and evaluate the models. The highest correlation coefficients (r) were found for LI (0.18 - 0.29; P <= 0.001), GL (0.05 - 0.21; P <= 0.001 to P>0.05) and FR (0.11 - 0.26; P <= 0.001 to P <= 0.05). For the remaining output variables, it was usually lower than 0.10. The smallest values of SDratio (0.96 - 1.06) were found for LI, GL and FR. For the rest of the output variables, it was usually above 1.00. The measures of predictor importance to ANN, CART, CHAID and MARS were generally low. In conclusion, the applied method of reproductive parameters prediction was rather ineffective, indicating that more powerful input variables are required to obtain better prediction results.

Kaynak

Pakistan Journal of Zoology

Cilt

51

Sayı

2

Bağlantı

https://doi.org/10.17582/journal.pjz/2019.51.2.421.431
https://hdl.handle.net/20.500.12712/10918

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.