• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Use of machine learning methods in prediction of short-term outcome in autism spectrum disorders

Tarih

2019

Yazar

Usta, Mirac Baris
Karabekiroglu, Koray
Sahin, Berkan
Aydin, Muazzez
Bozkurt, Abdullah
Karaosman, Tolga
Urer, Emre

Üst veri

Tüm öğe kaydını göster

Özet

OBJECTIVE Studies show partial improvements in some core symptoms of Autism Spectrum Disorders (ASD) in time. However, the predictive factors (e.g. pretreatment IQ, comorbid psychiatric disorders, adaptive, and language skills, etc.) for a better the outcome was not studied with machine learning methods. We aimed to examine the predictors of outcome with machine learning methods, which are novel computational methods including statistical estimation, information theories and mathematical learning automatically discovering useful patterns in large amounts of data. METHOD The study the group comprised 433 children (mean age: 72.3 +/- 45.9 months) with ASD diagnosis. The ASD symptoms were assessed by the Autism Behavior Checklist, Aberrant Behavior Checklist, Clinical Global Impression scales at baseline (T0) and 12th (T1), 24th (T2), and 36th (T3) months. We tested the performance of for machine learning algorithms (Naive Bayes, Generalized Linear Model, Logistic Regression, Decision Tree) on our data, including the 254 items in the baseline forms. Patients with <= 2 CGI points in ASD symptoms at in 36 months were accepted as the group who has "better outcome" as the prediction class. RESULTS The significant proportion of the cases showed significant improvement in ASD symptoms (39.7% in T1, 60.7% in T2; 77.8% in T3). Our machine learning model in T3 showed that diagnosis group affected the prognosis. In the autism group, older father and mother age; in PDD-NOS group, MR comorbidity, less birth weight and older age at diagnosis have a worse outcome. In Asperger's Disorder age at diagnosis, age at first evaluation and developmental cornerstones has affected prognosis. CONCLUSION In accordance with other studies we found early age diagnosis, early start rehabilitation, the severity of ASD symptoms at baseline assessment predicted outcome. Also, we found comorbid psychiatric diagnoses are affecting the outcome of ASD symptoms in clinical observation. The machine learning models reveal several others are more significant (e.g. parental age, birth weight, sociodemographic variables, etc.) in terms of prognostic information and also planning treatment of children with ASD.

Kaynak

Psychiatry and Clinical Psychopharmacology

Cilt

29

Sayı

3

Bağlantı

https://doi.org/10.1080/24750573.2018.1545334
https://hdl.handle.net/20.500.12712/10729

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.