Publication: Estimation of Soil Erodability Parameters Based on Different Machine Algorithms Integrated With Remote Sensing Techniques
| dc.authorscopusid | 56725767200 | |
| dc.authorscopusid | 57216947877 | |
| dc.authorscopusid | 56297811900 | |
| dc.authorscopusid | 38861003600 | |
| dc.authorscopusid | 16052385200 | |
| dc.authorwosid | Dengiz, Orhan/Abg-7284-2020 | |
| dc.authorwosid | Aksoy, Hasan/Aai-6557-2021 | |
| dc.authorwosid | Alaboz, Pelin/Abf-5309-2020 | |
| dc.contributor.author | Saygin, F. | |
| dc.contributor.author | Aksoy, H. | |
| dc.contributor.author | Alaboz, P. | |
| dc.contributor.author | Birol, M. | |
| dc.contributor.author | Dengiz, O. | |
| dc.contributor.authorID | Aksoy, Hasan/0000-0003-1980-3834 | |
| dc.contributor.authorID | Alaboz, Pelin/0000-0001-7345-938X | |
| dc.date.accessioned | 2025-12-11T01:13:34Z | |
| dc.date.issued | 2024 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Saygin, F.] Sivas Univ Sci & Technol, Fac Agr Sci & Technol, Plant Prod & Technol Dept, Sivas, Turkiye; [Aksoy, H.] Sinop Univ, Ayancik Vocat Sch, Dept Forestry & Forest Prod, Sinop, Turkiye; [Alaboz, P.] Isparta Univ Appl Sci, Fac Agr, Dept Soil Sci & Plant Nutr, Isparta, Turkiye; [Birol, M.] Minist Agr & Forestry, Soil & Water Resources Dept, Black Sea Agr Res Inst, Samsun, Turkiye; [Dengiz, O.] Ondokuz Mayis Univ, Agr Fac, Plant Nutr & Soil Sci Dept, Samsun, Turkiye | en_US |
| dc.description | Aksoy, Hasan/0000-0003-1980-3834; Alaboz, Pelin/0000-0001-7345-938X | en_US |
| dc.description.abstract | Erosion causes significant damage to life and nature every year; therefore, controlling erosion is of great importance. Therefore, maintaining the balance between soil, plants, and water plays a vital role in controlling erosion. Aim of this study was to estimate some erodability parameters (structural stability index-SSI, aggregate stability-AS, and erosion ratio-ER) with indices and reflectance obtained via TripleSat satellite imagery using machine learning algorithms (support vector regression-SVR, artificial neural network-ANN, and K-nearest neighbors-KNN) in Samsun Province, Vezirkopru, Turkiye. Various interpolation methods (inverse distance weighting-IDW, radial basis function-RBF, and kriging) were also used to create spatial distribution maps of the study area for observed and predicted values. Estimates were made using NDVI, SAVI, and ASVI indices obtained from satellite images and NIR reflectance. Accordingly, the ANN algorithm yielded the lowest MAE (2.86%), MAPE (9.46%), and highest R2 (0.82) for SSI estimation. For AS and ER estimation, SVR had the highest predictive accuracy. Given the RMSE values in spatial distribution maps for observed and estimated values (SSI 7.861-7.248%, AS 14.485-14.536%, and ER 4.919-3.742%), the highest predictive accuracy was obtained with kriging. Thus, it was concluded that erosion parameters can be successfully estimated with reflectance and index values obtained from satellite images using SVR and ANN algorithms, and low-error distribution maps can be created using the kriging method. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1007/s13762-024-05574-z | |
| dc.identifier.endpage | 9540 | en_US |
| dc.identifier.issn | 1735-1472 | |
| dc.identifier.issn | 1735-2630 | |
| dc.identifier.issue | 15 | en_US |
| dc.identifier.scopus | 2-s2.0-85189456794 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.startpage | 9527 | en_US |
| dc.identifier.uri | https://doi.org/10.1007/s13762-024-05574-z | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/42146 | |
| dc.identifier.volume | 21 | en_US |
| dc.identifier.wos | WOS:001198020400007 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | International Journal of Environmental Science and Technology | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Soil Properties | en_US |
| dc.subject | Erodibility Factors | en_US |
| dc.subject | Machine-Learning Algorithm | en_US |
| dc.subject | Remote Sensing | en_US |
| dc.subject | Kriging | en_US |
| dc.title | Estimation of Soil Erodability Parameters Based on Different Machine Algorithms Integrated With Remote Sensing Techniques | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
