Publication:
Estimation of Soil Erodability Parameters Based on Different Machine Algorithms Integrated With Remote Sensing Techniques

dc.authorscopusid56725767200
dc.authorscopusid57216947877
dc.authorscopusid56297811900
dc.authorscopusid38861003600
dc.authorscopusid16052385200
dc.authorwosidDengiz, Orhan/Abg-7284-2020
dc.authorwosidAksoy, Hasan/Aai-6557-2021
dc.authorwosidAlaboz, Pelin/Abf-5309-2020
dc.contributor.authorSaygin, F.
dc.contributor.authorAksoy, H.
dc.contributor.authorAlaboz, P.
dc.contributor.authorBirol, M.
dc.contributor.authorDengiz, O.
dc.contributor.authorIDAksoy, Hasan/0000-0003-1980-3834
dc.contributor.authorIDAlaboz, Pelin/0000-0001-7345-938X
dc.date.accessioned2025-12-11T01:13:34Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Saygin, F.] Sivas Univ Sci & Technol, Fac Agr Sci & Technol, Plant Prod & Technol Dept, Sivas, Turkiye; [Aksoy, H.] Sinop Univ, Ayancik Vocat Sch, Dept Forestry & Forest Prod, Sinop, Turkiye; [Alaboz, P.] Isparta Univ Appl Sci, Fac Agr, Dept Soil Sci & Plant Nutr, Isparta, Turkiye; [Birol, M.] Minist Agr & Forestry, Soil & Water Resources Dept, Black Sea Agr Res Inst, Samsun, Turkiye; [Dengiz, O.] Ondokuz Mayis Univ, Agr Fac, Plant Nutr & Soil Sci Dept, Samsun, Turkiyeen_US
dc.descriptionAksoy, Hasan/0000-0003-1980-3834; Alaboz, Pelin/0000-0001-7345-938Xen_US
dc.description.abstractErosion causes significant damage to life and nature every year; therefore, controlling erosion is of great importance. Therefore, maintaining the balance between soil, plants, and water plays a vital role in controlling erosion. Aim of this study was to estimate some erodability parameters (structural stability index-SSI, aggregate stability-AS, and erosion ratio-ER) with indices and reflectance obtained via TripleSat satellite imagery using machine learning algorithms (support vector regression-SVR, artificial neural network-ANN, and K-nearest neighbors-KNN) in Samsun Province, Vezirkopru, Turkiye. Various interpolation methods (inverse distance weighting-IDW, radial basis function-RBF, and kriging) were also used to create spatial distribution maps of the study area for observed and predicted values. Estimates were made using NDVI, SAVI, and ASVI indices obtained from satellite images and NIR reflectance. Accordingly, the ANN algorithm yielded the lowest MAE (2.86%), MAPE (9.46%), and highest R2 (0.82) for SSI estimation. For AS and ER estimation, SVR had the highest predictive accuracy. Given the RMSE values in spatial distribution maps for observed and estimated values (SSI 7.861-7.248%, AS 14.485-14.536%, and ER 4.919-3.742%), the highest predictive accuracy was obtained with kriging. Thus, it was concluded that erosion parameters can be successfully estimated with reflectance and index values obtained from satellite images using SVR and ANN algorithms, and low-error distribution maps can be created using the kriging method.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s13762-024-05574-z
dc.identifier.endpage9540en_US
dc.identifier.issn1735-1472
dc.identifier.issn1735-2630
dc.identifier.issue15en_US
dc.identifier.scopus2-s2.0-85189456794
dc.identifier.scopusqualityQ2
dc.identifier.startpage9527en_US
dc.identifier.urihttps://doi.org/10.1007/s13762-024-05574-z
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42146
dc.identifier.volume21en_US
dc.identifier.wosWOS:001198020400007
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofInternational Journal of Environmental Science and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSoil Propertiesen_US
dc.subjectErodibility Factorsen_US
dc.subjectMachine-Learning Algorithmen_US
dc.subjectRemote Sensingen_US
dc.subjectKrigingen_US
dc.titleEstimation of Soil Erodability Parameters Based on Different Machine Algorithms Integrated With Remote Sensing Techniquesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files