Publication:
A Fully Convolutional Neural Network for Fast Detection, Classification, and Segmentation of Fabric Defects

dc.authorscopusid57697992100
dc.authorscopusid16229976900
dc.authorscopusid57195276768
dc.contributor.authorMohammed, S.S.
dc.contributor.authorGökalp, H.G.
dc.contributor.authorMahmood, S.N.
dc.date.accessioned2025-12-11T00:35:44Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Mohammed] Swash Sami, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Gökalp] Hülya, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Mahmood] Sarmad Nozad, Electronic and Control Engineering Department, Northern Technical University, Mosul, Nineveh, Iraqen_US
dc.description.abstractThe integration of artificial intelligence and image processing for fabric defect detection is gaining prominence due to its practical significance in enhancing production quality. This study proposes a fast and accurate convolutional neural network (CNN) designed to detect defects in fabric with minimal computational complexity. The model processes input images of size 256 × 256 and generates defect masks of size 64 × 64. To improve detection accuracy, the model incorporates techniques such as ResNet, scheduled learning rate policies, data augmentation, and a weighted cross-entropy loss function. Trained on a diverse dataset of 2,681 defect samples from four fabric types and defect classes (holes, oil stains, color stains, and roller marks), the model achieved an accuracy of over 96%, a loss value below 0.1, and high recall, precision, and F1-Score. Compared to other state-of-the-art models, the proposed model delivers competitive performance with significantly faster prediction times, making it suitable for real-world fabric inspection applications. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.en_US
dc.identifier.doi10.1007/s00521-025-11495-w
dc.identifier.endpage23272en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue28en_US
dc.identifier.scopus2-s2.0-105013802747
dc.identifier.scopusqualityQ1
dc.identifier.startpage23249en_US
dc.identifier.urihttps://doi.org/10.1007/s00521-025-11495-w
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37712
dc.identifier.volume37en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectConvolutional Neural Network (CNN)en_US
dc.subjectData Annotationen_US
dc.subjectDeep Learningen_US
dc.subjectDefect Segmentation and Classificationen_US
dc.subjectFabric Defect Detectionen_US
dc.subjectMachine Learning Modelen_US
dc.titleA Fully Convolutional Neural Network for Fast Detection, Classification, and Segmentation of Fabric Defectsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files