Publication:
Quantifying Impact of Droughts on Barley Yield in North Dakota, USA Using Multiple Linear Regression and Artificial Neural Network

dc.authorscopusid21743556600
dc.authorscopusid55643477400
dc.authorscopusid57197005919
dc.authorscopusid7003345871
dc.contributor.authorOdabaş, M.S.
dc.contributor.authorLeelaruban, N.
dc.contributor.authorSimsek, H.
dc.contributor.authorPadmanabhan, G.
dc.date.accessioned2020-06-21T14:04:08Z
dc.date.available2020-06-21T14:04:08Z
dc.date.issued2014
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Odabaş] Mehmet Serhat, Vocational High School of Bafra, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Leelaruban] Navaratnam, NDSU College of Engineering, Fargo, ND, United States; [Simsek] Halis, NDSU College of Engineering, Fargo, ND, United States; [Padmanabhan] Ganesh, NDSU College of Engineering, Fargo, ND, United Statesen_US
dc.description.abstractThis research investigated the effect of different drought conditions on Barley (Hordeum vulgare L.) yield in North Dakota, USA, using Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) methods. Though MLR method is widely used, the ANN method has not been used in the past to investigate the effect of droughts on barley yields to the best of authors' knowledge. It is found from this study that the ANN model performs better than MLR in estimating barley yield. In this paper, the ANN is proposed as a viable alternative method or in combination with MLR to investigate the impact of droughts on crop yields. © CTU FTS 2014.en_US
dc.identifier.doi10.14311/NNW.2014.24.020
dc.identifier.endpage355en_US
dc.identifier.issn1210-0552
dc.identifier.issn2336-4335
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-84942110065
dc.identifier.scopusqualityQ4
dc.identifier.startpage343en_US
dc.identifier.urihttps://doi.org/10.14311/NNW.2014.24.020
dc.identifier.volume24en_US
dc.identifier.wosWOS:000341614500002
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherInstitute of Computer Science Pod vodarenskou vezi 2 Prague 8, 18207en_US
dc.relation.ispartofNeural Network Worlden_US
dc.relation.journalNeural Network Worlden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectBarley Yielden_US
dc.subjectDrought Impacten_US
dc.subjectMultiple Linear Regressionen_US
dc.titleQuantifying Impact of Droughts on Barley Yield in North Dakota, USA Using Multiple Linear Regression and Artificial Neural Networken_US
dc.typeArticleen_US
dspace.entity.typePublication

Files