Publication:
Application of Elliptical Fourier Analysis and Color Properties in Hazelnut Classification Using Machine Learning Algorithms

dc.authorscopusid59975911100
dc.authorscopusid55174904300
dc.authorscopusid26422531800
dc.authorwosidSauk, Hüseyin/Lft-2974-2024
dc.authorwosidTaner, Alper/Ahd-2451-2022
dc.contributor.authorGhanem, Laith
dc.contributor.authorTaner, Alper
dc.contributor.authorSauk, Hueseyin
dc.contributor.authorIDGhanem, Laith/0009-0005-5195-2647
dc.contributor.authorIDSauk, Hüseyin/0000-0001-5622-6170
dc.date.accessioned2025-12-11T01:21:16Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ghanem, Laith; Taner, Alper; Sauk, Hueseyin] Ondokuz Mayis Univ, Fac Agr, Dept Agr Machines & Technol Engn, Samsun, Turkiyeen_US
dc.descriptionGhanem, Laith/0009-0005-5195-2647; Sauk, Hüseyin/0000-0001-5622-6170en_US
dc.description.abstractThe accurate classification of hazelnut cultivars is critical for ensuring product consistency, quality control, and market competitiveness in the food industry. Conventional identification methods remain manual, time-consuming, and error-prone, highlighting the need for automated alternatives. This study presents a novel, real-time machine vision system for classifying 11 hazelnut cultivars using a single side-view image. The proposed approach integrates three complementary feature extraction techniques: Elliptical Fourier Analysis (EFA) for contour and shape decomposition, circular masking for curvature quantification, and brown color gradient analysis for surface tone assessment. The extracted features-fully normalized and dimensionless to account for variations in imaging angle, distance, and nut positioning-were classified using three machine learning algorithms: Support Vector Machine with Radial Basis Function (SVM-RBF), Multilayer Perceptron (MLP), and Extreme Learning Machine (ELM-RBF). Among the classifiers, SVM-RBF achieved the highest performance with an F1-score of 0.92 for multi-view images and 0.89 for side-view only. MLP and ELM-RBF followed with competitive yet slightly lower scores. The system demonstrated high robustness, computational efficiency, and interpretability. Overall, the proposed method offers a lightweight, scalable, and non-destructive solution for hazelnut cultivar classification and demonstrates strong potential for real-time deployment in industrial sorting lines and embedded systems in precision agriculture.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK)en_US
dc.description.sponsorshipThis research was funded by the Scientific and Technological Research Council of Turkey (TUBITAK).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1111/jfpe.70179
dc.identifier.issn0145-8876
dc.identifier.issn1745-4530
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-105009832253
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1111/jfpe.70179
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43143
dc.identifier.volume48en_US
dc.identifier.wosWOS:001522302200001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofJournal of Food Process Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCircular Masken_US
dc.subjectClassificationen_US
dc.subjectColor Featuresen_US
dc.subjectElliptical Fourier Analysisen_US
dc.subjectExtreme Learning Machineen_US
dc.subjectMultilayer Perceptronen_US
dc.subjectSupport Vector Machineen_US
dc.titleApplication of Elliptical Fourier Analysis and Color Properties in Hazelnut Classification Using Machine Learning Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files