Publication: Multiclass Apple Varieties Classification Using Machine Learning with Histogram of Oriented Gradient and Color Moments
| dc.authorscopusid | 55174904300 | |
| dc.authorscopusid | 58490094400 | |
| dc.authorscopusid | 57188552484 | |
| dc.authorscopusid | 36083903200 | |
| dc.authorscopusid | 8896549200 | |
| dc.authorscopusid | 57191538933 | |
| dc.authorscopusid | 57200083346 | |
| dc.authorwosid | Gheorghita, Neluș Evelin/Hpf-0780-2023 | |
| dc.authorwosid | Kabaş, Önder/C-3688-2016 | |
| dc.authorwosid | Taner, Alper/Ahd-2451-2022 | |
| dc.contributor.author | Taner, Alper | |
| dc.contributor.author | Mengstu, Mahtem Teweldemedhin | |
| dc.contributor.author | Selvi, Kemal cagatay | |
| dc.contributor.author | Duran, Hueseyin | |
| dc.contributor.author | Kabas, Oender | |
| dc.contributor.author | Guer, Ibrahim | |
| dc.contributor.author | Gheorghita, Nelus-Evelin | |
| dc.contributor.authorID | Mengstu, Mahtem/0000-0001-5768-9150 | |
| dc.contributor.authorID | Gür, İbrahim/0000-0003-0872-7135 | |
| dc.contributor.authorID | Taner, Alper/0000-0001-8679-2069 | |
| dc.contributor.authorID | Gheorghita, Nelus-Evelin/0009-0001-0771-1230 | |
| dc.date.accessioned | 2025-12-11T01:32:17Z | |
| dc.date.issued | 2023 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Taner, Alper; Mengstu, Mahtem Teweldemedhin; Selvi, Kemal cagatay; Duran, Hueseyin; Karakoese, Tugba] Ondokuz Mayis Univ, Fac Agr, Dept Agr Machinery & Technol Engn, TR-55200 Samsun, Turkiye; [Mengstu, Mahtem Teweldemedhin] Hamelmalo Agr Coll, Dept Agr Engn, POB 397, Keren, Eritrea; [Kabas, Oender] Akdeniz Univ, Vocat Sch Tech Sci, TR-07000 Antalya, Turkiye; [Guer, Ibrahim] Fruit Res Inst, TR-32500 Isparta, Turkiye; [Gheorghita, Nelus-Evelin] Univ Polytehn Bucharest, Fac Biotech Syst Engn, Dept Biotech Syst, Bucharest 006042, Romania | en_US |
| dc.description | Mengstu, Mahtem/0000-0001-5768-9150; Gür, İbrahim/0000-0003-0872-7135; Taner, Alper/0000-0001-8679-2069; Gheorghita, Nelus-Evelin/0009-0001-0771-1230; | en_US |
| dc.description.abstract | It is critically necessary to maximize the efficiency of agricultural methods while concurrently reducing the cost of production. Varieties, types, and fruit classification grades are crucial to fruit production. High expenditure, inconsistent subjectivity, and tedious labor characterize traditional and manual varieties classification. This study developed machine learning (ML) models to classify ten apple varieties, extracting the histogram of oriented gradient (HOG) and color moments from RGB apple images. Support vector machine (SVM), random forest classifier (RFC), multilayer perceptron (MLP), and K-nearest neighbor (KNN) classification models were trained with 10-fold stratified cross-validation (Skfold) by using the textural and color features, and a GridSearch was implemented to fine-tune the hyperparameters. The trained models, SVM, RFC, MLP, and KNN were tested with separate test data and performed well, having an accuracy of 98.17%, 96.67%, 98.62%, and 91.28%, respectively. Having the top results, the MLP and SVM models demonstrated the potential of applying HOG and color moments to train ML models for classifying apple varieties. This study suggests conducting further research to thoroughly examine additional image features and determine the impact of combining features and utilizing different classifiers. | en_US |
| dc.description.sponsorship | University Politehnica of Bucharest, Romania | en_US |
| dc.description.sponsorship | The APC was funded by the University Politehnica of Bucharest, Romania, within the PubArt Program. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.3390/app13137682 | |
| dc.identifier.issn | 2076-3417 | |
| dc.identifier.issue | 13 | en_US |
| dc.identifier.scopus | 2-s2.0-85164927949 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.uri | https://doi.org/10.3390/app13137682 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/44419 | |
| dc.identifier.volume | 13 | en_US |
| dc.identifier.wos | WOS:001033290900001 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | Applied Sciences-Basel | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Apple | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Classification | en_US |
| dc.subject | Histogram of Oriented Gradient | en_US |
| dc.subject | Color Moments | en_US |
| dc.title | Multiclass Apple Varieties Classification Using Machine Learning with Histogram of Oriented Gradient and Color Moments | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
