Publication:
Multiclass Apple Varieties Classification Using Machine Learning with Histogram of Oriented Gradient and Color Moments

dc.authorscopusid55174904300
dc.authorscopusid58490094400
dc.authorscopusid57188552484
dc.authorscopusid36083903200
dc.authorscopusid8896549200
dc.authorscopusid57191538933
dc.authorscopusid57200083346
dc.authorwosidGheorghita, Neluș Evelin/Hpf-0780-2023
dc.authorwosidKabaş, Önder/C-3688-2016
dc.authorwosidTaner, Alper/Ahd-2451-2022
dc.contributor.authorTaner, Alper
dc.contributor.authorMengstu, Mahtem Teweldemedhin
dc.contributor.authorSelvi, Kemal cagatay
dc.contributor.authorDuran, Hueseyin
dc.contributor.authorKabas, Oender
dc.contributor.authorGuer, Ibrahim
dc.contributor.authorGheorghita, Nelus-Evelin
dc.contributor.authorIDMengstu, Mahtem/0000-0001-5768-9150
dc.contributor.authorIDGür, İbrahim/0000-0003-0872-7135
dc.contributor.authorIDTaner, Alper/0000-0001-8679-2069
dc.contributor.authorIDGheorghita, Nelus-Evelin/0009-0001-0771-1230
dc.date.accessioned2025-12-11T01:32:17Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Taner, Alper; Mengstu, Mahtem Teweldemedhin; Selvi, Kemal cagatay; Duran, Hueseyin; Karakoese, Tugba] Ondokuz Mayis Univ, Fac Agr, Dept Agr Machinery & Technol Engn, TR-55200 Samsun, Turkiye; [Mengstu, Mahtem Teweldemedhin] Hamelmalo Agr Coll, Dept Agr Engn, POB 397, Keren, Eritrea; [Kabas, Oender] Akdeniz Univ, Vocat Sch Tech Sci, TR-07000 Antalya, Turkiye; [Guer, Ibrahim] Fruit Res Inst, TR-32500 Isparta, Turkiye; [Gheorghita, Nelus-Evelin] Univ Polytehn Bucharest, Fac Biotech Syst Engn, Dept Biotech Syst, Bucharest 006042, Romaniaen_US
dc.descriptionMengstu, Mahtem/0000-0001-5768-9150; Gür, İbrahim/0000-0003-0872-7135; Taner, Alper/0000-0001-8679-2069; Gheorghita, Nelus-Evelin/0009-0001-0771-1230;en_US
dc.description.abstractIt is critically necessary to maximize the efficiency of agricultural methods while concurrently reducing the cost of production. Varieties, types, and fruit classification grades are crucial to fruit production. High expenditure, inconsistent subjectivity, and tedious labor characterize traditional and manual varieties classification. This study developed machine learning (ML) models to classify ten apple varieties, extracting the histogram of oriented gradient (HOG) and color moments from RGB apple images. Support vector machine (SVM), random forest classifier (RFC), multilayer perceptron (MLP), and K-nearest neighbor (KNN) classification models were trained with 10-fold stratified cross-validation (Skfold) by using the textural and color features, and a GridSearch was implemented to fine-tune the hyperparameters. The trained models, SVM, RFC, MLP, and KNN were tested with separate test data and performed well, having an accuracy of 98.17%, 96.67%, 98.62%, and 91.28%, respectively. Having the top results, the MLP and SVM models demonstrated the potential of applying HOG and color moments to train ML models for classifying apple varieties. This study suggests conducting further research to thoroughly examine additional image features and determine the impact of combining features and utilizing different classifiers.en_US
dc.description.sponsorshipUniversity Politehnica of Bucharest, Romaniaen_US
dc.description.sponsorshipThe APC was funded by the University Politehnica of Bucharest, Romania, within the PubArt Program.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.3390/app13137682
dc.identifier.issn2076-3417
dc.identifier.issue13en_US
dc.identifier.scopus2-s2.0-85164927949
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3390/app13137682
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44419
dc.identifier.volume13en_US
dc.identifier.wosWOS:001033290900001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofApplied Sciences-Baselen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAppleen_US
dc.subjectMachine Learningen_US
dc.subjectClassificationen_US
dc.subjectHistogram of Oriented Gradienten_US
dc.subjectColor Momentsen_US
dc.titleMulticlass Apple Varieties Classification Using Machine Learning with Histogram of Oriented Gradient and Color Momentsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files