Publication:
Particle Swarm Optimization-Based Variable Selection in Poisson Regression Analysis via Information Complexity-Type Criteria

dc.authorscopusid57193227350
dc.authorscopusid57191925575
dc.authorscopusid57191918830
dc.authorscopusid57203396558
dc.authorscopusid12766595200
dc.contributor.authorKoc, H.
dc.contributor.authorDunder, E.
dc.contributor.authorGumustekin, S.
dc.contributor.authorKoc, T.
dc.contributor.authorCengiz, M.A.
dc.date.accessioned2020-06-21T13:12:54Z
dc.date.available2020-06-21T13:12:54Z
dc.date.issued2018
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Koc] Haydar, Department of Statistics, Çankiri Karatekin Üniversitesi, Cankiri, Turkey; [Dunder] Emre, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Gumustekin] Serpil, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Koc] Tuba, Department of Statistics, Çankiri Karatekin Üniversitesi, Cankiri, Turkey; [Cengiz] Mehmet Ali, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractModeling of count responses is widely performed via Poisson regression models. This paper covers the problem of variable selection in Poisson regression analysis. The basic emphasis of this paper is to present the usefulness of information complexity-based criteria for Poisson regression. Particle swarm optimization (PSO) algorithm was adopted to minimize the information criteria. A real dataset example and two simulation studies were conducted for highly collinear and lowly correlated datasets. Results demonstrate the capability of information complexity-type criteria. According to the results, information complexity-type criteria can be effectively used instead of classical criteria in count data modeling via the PSO algorithm. © 2018, © 2018 Taylor & Francis Group, LLC.en_US
dc.identifier.doi10.1080/03610926.2017.1390129
dc.identifier.endpage5306en_US
dc.identifier.issn0361-0926
dc.identifier.issue21en_US
dc.identifier.scopus2-s2.0-85051563966
dc.identifier.scopusqualityQ2
dc.identifier.startpage5298en_US
dc.identifier.urihttps://doi.org/10.1080/03610926.2017.1390129
dc.identifier.volume47en_US
dc.identifier.wosWOS:000441632900010
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor and Francis Inc. 325 Chestnut St, Suite 800 Philadelphia PA 19106en_US
dc.relation.ispartofCommunications in Statistics-Theory and Methodsen_US
dc.relation.journalCommunications in Statistics-Theory and Methodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectParticle Swarm Optimizationen_US
dc.subjectPoisson Regressionen_US
dc.subjectVariable Selectionen_US
dc.titleParticle Swarm Optimization-Based Variable Selection in Poisson Regression Analysis via Information Complexity-Type Criteriaen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files