Publication: Particle Swarm Optimization-Based Variable Selection in Poisson Regression Analysis via Information Complexity-Type Criteria
| dc.authorscopusid | 57193227350 | |
| dc.authorscopusid | 57191925575 | |
| dc.authorscopusid | 57191918830 | |
| dc.authorscopusid | 57203396558 | |
| dc.authorscopusid | 12766595200 | |
| dc.contributor.author | Koc, H. | |
| dc.contributor.author | Dunder, E. | |
| dc.contributor.author | Gumustekin, S. | |
| dc.contributor.author | Koc, T. | |
| dc.contributor.author | Cengiz, M.A. | |
| dc.date.accessioned | 2020-06-21T13:12:54Z | |
| dc.date.available | 2020-06-21T13:12:54Z | |
| dc.date.issued | 2018 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Koc] Haydar, Department of Statistics, Çankiri Karatekin Üniversitesi, Cankiri, Turkey; [Dunder] Emre, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Gumustekin] Serpil, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Koc] Tuba, Department of Statistics, Çankiri Karatekin Üniversitesi, Cankiri, Turkey; [Cengiz] Mehmet Ali, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey | en_US |
| dc.description.abstract | Modeling of count responses is widely performed via Poisson regression models. This paper covers the problem of variable selection in Poisson regression analysis. The basic emphasis of this paper is to present the usefulness of information complexity-based criteria for Poisson regression. Particle swarm optimization (PSO) algorithm was adopted to minimize the information criteria. A real dataset example and two simulation studies were conducted for highly collinear and lowly correlated datasets. Results demonstrate the capability of information complexity-type criteria. According to the results, information complexity-type criteria can be effectively used instead of classical criteria in count data modeling via the PSO algorithm. © 2018, © 2018 Taylor & Francis Group, LLC. | en_US |
| dc.identifier.doi | 10.1080/03610926.2017.1390129 | |
| dc.identifier.endpage | 5306 | en_US |
| dc.identifier.issn | 0361-0926 | |
| dc.identifier.issue | 21 | en_US |
| dc.identifier.scopus | 2-s2.0-85051563966 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.startpage | 5298 | en_US |
| dc.identifier.uri | https://doi.org/10.1080/03610926.2017.1390129 | |
| dc.identifier.volume | 47 | en_US |
| dc.identifier.wos | WOS:000441632900010 | |
| dc.identifier.wosquality | Q3 | |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor and Francis Inc. 325 Chestnut St, Suite 800 Philadelphia PA 19106 | en_US |
| dc.relation.ispartof | Communications in Statistics-Theory and Methods | en_US |
| dc.relation.journal | Communications in Statistics-Theory and Methods | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Particle Swarm Optimization | en_US |
| dc.subject | Poisson Regression | en_US |
| dc.subject | Variable Selection | en_US |
| dc.title | Particle Swarm Optimization-Based Variable Selection in Poisson Regression Analysis via Information Complexity-Type Criteria | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
