Publication:
Generalized Supplemented Lattices

dc.authorscopusid57202735203
dc.authorscopusid36142255600
dc.authorscopusid8400794600
dc.contributor.authorBiçer, C.I.
dc.contributor.authorNebiyev, C.
dc.contributor.authorPancar, A.
dc.date.accessioned2020-06-21T13:12:55Z
dc.date.available2020-06-21T13:12:55Z
dc.date.issued2018
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Biçer] Çiğdem, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Nebiyev] Celil, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Pancar] Ali, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn this work, we define (amply) generalized supplemented lattices and investigate some properties of these lattices. In this paper, all lattices are complete modular lattices with the smallest element 0 and the greatest element 1. Let L be a lattice, 1 = a<inf>1</inf> ∨ a<inf>2</inf> ∨ . . .∨ a<inf>n</inf> and the quotient sublattices a<inf>1</inf>/0, a<inf>2</inf>/0,. . ., a<inf>n</inf>/0 be generalized supplemented, then L is generalized supplemented. If L is an amply generalized supplemented lattice, then for every a ∈ L, the quotient sublattice 1/a is amply generalized supplemented. © 2018 Miskolc University Press.en_US
dc.identifier.doi10.18514/MMN.2018.1974
dc.identifier.endpage147en_US
dc.identifier.issn1787-2405
dc.identifier.issn1787-2413
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85049152981
dc.identifier.scopusqualityQ3
dc.identifier.startpage141en_US
dc.identifier.urihttps://doi.org/10.18514/MMN.2018.1974
dc.identifier.volume19en_US
dc.identifier.wosWOS:000441460300011
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherUniversity of Miskolc matronto@uni-miskolc.huen_US
dc.relation.ispartofMiskolc Mathematical Notesen_US
dc.relation.journalMiskolc Mathematical Notesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAmply Supplemented Latticesen_US
dc.subjectHollow Latticesen_US
dc.subjectLatticesen_US
dc.subjectSupplemented Latticesen_US
dc.titleGeneralized Supplemented Latticesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files