Publication:
Unlocking Complex Water Quality Dynamics: Principal Component Analysis and Multivariate Adaptive Regression Splines Integration for Predicting Water Quality Index in the Kızılırmak River

dc.authorscopusid57682845400
dc.authorscopusid57894379500
dc.authorscopusid6507826792
dc.authorscopusid60093219200
dc.authorwosidOzkoc, Hülya/Abf-2260-2021
dc.authorwosidTırınk, Sevtap/Adr-7302-2022
dc.contributor.authorTirink, Sevtap
dc.contributor.authorBoke Ozkoc, Hulya
dc.contributor.authorAriman, Sema
dc.contributor.authorAlsaadawi, Shaymaa Farooq Tayeb
dc.date.accessioned2025-12-11T00:45:31Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Tirink, Sevtap] Igdir Univ, Hlth Serv Vocat Sch, Dept Med Serv & Tech, Environm Hlth Program, TR-76000 Igdir, Turkiye; [Boke Ozkoc, Hulya; Alsaadawi, Shaymaa Farooq Tayeb] Ondokuz Mayis Univ, Fac Engn, Dept Environm Engn, TR-55139 Samsun, Turkiye; [Ariman, Sema] Samsun Univ, Fac Aeronaut & Astronaut, Dept Climate Sci & Meteorol Engn, TR-55420 Samsun, Turkiyeen_US
dc.description.abstractIn the field of environmental sustainability, the preservation of water resources and the maintenance of water quality are of utmost importance. The aim of this study is to develop a predictive model for assessing the water quality of the K & imath;z & imath;l & imath;rmak river by integrating Principal Component Analysis (PCA) and Multivariate Adaptive Regression Splines (MARS) methodologies. To assess water quality, surface water samples obtained from six distinct locations during the 2022-2023 period were analyzed with respect to seventeen physicochemical parameters. The first stage of the present study was the determination of the most informative variables in the water quality data set using the dimensionality reduction method PCA. In the second phase, a predictive model was developed using the MARS algorithm based on the principal components derived from the PCA-reduced dataset. The MARS algorithm was proposed to predict Water Quality Index (WQI) values using this reduced dataset. A coefficient of determination (R2) value of 0.997 was achieved for predicting the WQI in the study area. According to the results of this study, the MARS model developed using PCA demonstrated high precision and performance in estimating the WQI. This methodological framework clarified the interactions between parameters in water quality assessment studies, allowing for a comprehensive analysis of their overall effects on WQI.en_US
dc.description.sponsorshipOndokuz Mayimath;s University Scientific Research Project [PYO.MUH.1908.22.041]en_US
dc.description.sponsorshipThis study was supported by the Ondokuz May & imath;s University Scientific Research Project (Project No: PYO.MUH.1908.22.041). We also thank the General Directorate of Meteorology for providing meteorological data.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s10653-025-02735-y
dc.identifier.issn0269-4042
dc.identifier.issn1573-2983
dc.identifier.issue10en_US
dc.identifier.pmid40932514
dc.identifier.scopus2-s2.0-105015483484
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s10653-025-02735-y
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38976
dc.identifier.volume47en_US
dc.identifier.wosWOS:001568936000001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofEnvironmental Geochemistry and Healthen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectWater Quality Indexen_US
dc.subjectK & Imathen_US
dc.subjectZ & Imathen_US
dc.subjectL & Imathen_US
dc.subjectRmak Riveren_US
dc.subjectPrincipal Component Analysisen_US
dc.subjectMARS Algorithmen_US
dc.titleUnlocking Complex Water Quality Dynamics: Principal Component Analysis and Multivariate Adaptive Regression Splines Integration for Predicting Water Quality Index in the Kızılırmak Riveren_US
dc.typeArticleen_US
dspace.entity.typePublication

Files