Publication:
Estimation of Biomass Higher Heating Value (HHV) Based on the Proximate Analysis: Smart Modeling and Correlation

dc.authorscopusid57194393555
dc.authorscopusid57210809563
dc.authorscopusid56921733000
dc.authorscopusid58584026600
dc.authorscopusid7003728792
dc.authorscopusid15127641000
dc.contributor.authorDashti, A.
dc.contributor.authorNoushabadi, A.S.
dc.contributor.authorRaji, M.
dc.contributor.authorRazmi, A.
dc.contributor.authorCeylan, S.
dc.contributor.authorMohammadi, A.H.
dc.date.accessioned2020-06-21T12:19:51Z
dc.date.available2020-06-21T12:19:51Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Dashti] Amir, Young Researchers and Elites Club, Islamic Azad University, Science and Research Branch, Tehran, Iran; [Noushabadi] Abolfazl Sajadi, Department of Chemical Engineering, University of Kashan, Kashan, Isfahan, Iran; [Raji] Mojtaba, Department of Chemical Engineering, University of Kashan, Kashan, Isfahan, Iran; [Razmi] Amir, Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, United States; [Ceylan] Selim, Department of Chemical Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Mohammadi] Amir Hossein, Institut de Recherche en Génie Chimique et Pétrolier (IRGCP), Paris, Cedex, France, Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africaen_US
dc.description.abstractIn order to evaluate the potential and make a technical assessment of biomass energy, it is crucial to determine the higher heating value (HHV) of biomass fuels. Thus, multilayer perceptron artificial neural network (MLP-ANN) genetic algorithm-adaptive neuro fuzzy inference system (GA-ANFIS) differential evolution-ANFIS (DE-ANFIS), GA-radial basis function (GA-RBF), least square support vector machine (LSSVM) methods and an empirical correlation (multivariate polynomial regression (MPR)) were employed for the estimation of the HHV of biomass fuels. The comparisons of results show that GA-RBF and MPR models have higher accuracy as coefficients of regression (R2) values equal to 0.9591 and 0.9597, respectively. The average Absolute Relative Errors (% AARD) were obtained as 3.9547 for GA-RBF and 3.9791 for MPR models. The results show that proposed techniques are working efficiently in the estimation of HHV of different sources of biomass. © 2019 Elsevier Ltden_US
dc.identifier.doi10.1016/j.fuel.2019.115931
dc.identifier.issn0016-2361
dc.identifier.scopus2-s2.0-85071461453
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.fuel.2019.115931
dc.identifier.volume257en_US
dc.identifier.wosWOS:000486413500031
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofFuelen_US
dc.relation.journalFuelen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiomassen_US
dc.subjectData Miningen_US
dc.subjectEstimationen_US
dc.subjectHigher Heating Value (HHV)en_US
dc.subjectSmart Modelingen_US
dc.titleEstimation of Biomass Higher Heating Value (HHV) Based on the Proximate Analysis: Smart Modeling and Correlationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files