Publication: Estimation of Biomass Higher Heating Value (HHV) Based on the Proximate Analysis: Smart Modeling and Correlation
| dc.authorscopusid | 57194393555 | |
| dc.authorscopusid | 57210809563 | |
| dc.authorscopusid | 56921733000 | |
| dc.authorscopusid | 58584026600 | |
| dc.authorscopusid | 7003728792 | |
| dc.authorscopusid | 15127641000 | |
| dc.contributor.author | Dashti, A. | |
| dc.contributor.author | Noushabadi, A.S. | |
| dc.contributor.author | Raji, M. | |
| dc.contributor.author | Razmi, A. | |
| dc.contributor.author | Ceylan, S. | |
| dc.contributor.author | Mohammadi, A.H. | |
| dc.date.accessioned | 2020-06-21T12:19:51Z | |
| dc.date.available | 2020-06-21T12:19:51Z | |
| dc.date.issued | 2019 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Dashti] Amir, Young Researchers and Elites Club, Islamic Azad University, Science and Research Branch, Tehran, Iran; [Noushabadi] Abolfazl Sajadi, Department of Chemical Engineering, University of Kashan, Kashan, Isfahan, Iran; [Raji] Mojtaba, Department of Chemical Engineering, University of Kashan, Kashan, Isfahan, Iran; [Razmi] Amir, Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, United States; [Ceylan] Selim, Department of Chemical Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Mohammadi] Amir Hossein, Institut de Recherche en Génie Chimique et Pétrolier (IRGCP), Paris, Cedex, France, Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa | en_US |
| dc.description.abstract | In order to evaluate the potential and make a technical assessment of biomass energy, it is crucial to determine the higher heating value (HHV) of biomass fuels. Thus, multilayer perceptron artificial neural network (MLP-ANN) genetic algorithm-adaptive neuro fuzzy inference system (GA-ANFIS) differential evolution-ANFIS (DE-ANFIS), GA-radial basis function (GA-RBF), least square support vector machine (LSSVM) methods and an empirical correlation (multivariate polynomial regression (MPR)) were employed for the estimation of the HHV of biomass fuels. The comparisons of results show that GA-RBF and MPR models have higher accuracy as coefficients of regression (R2) values equal to 0.9591 and 0.9597, respectively. The average Absolute Relative Errors (% AARD) were obtained as 3.9547 for GA-RBF and 3.9791 for MPR models. The results show that proposed techniques are working efficiently in the estimation of HHV of different sources of biomass. © 2019 Elsevier Ltd | en_US |
| dc.identifier.doi | 10.1016/j.fuel.2019.115931 | |
| dc.identifier.issn | 0016-2361 | |
| dc.identifier.scopus | 2-s2.0-85071461453 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1016/j.fuel.2019.115931 | |
| dc.identifier.volume | 257 | en_US |
| dc.identifier.wos | WOS:000486413500031 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Ltd | en_US |
| dc.relation.ispartof | Fuel | en_US |
| dc.relation.journal | Fuel | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Biomass | en_US |
| dc.subject | Data Mining | en_US |
| dc.subject | Estimation | en_US |
| dc.subject | Higher Heating Value (HHV) | en_US |
| dc.subject | Smart Modeling | en_US |
| dc.title | Estimation of Biomass Higher Heating Value (HHV) Based on the Proximate Analysis: Smart Modeling and Correlation | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
