Publication:
A Hybridized Consistent Akaike Type Information Criterion for Regression Models in the Presence of Multicollinearity

dc.authorscopusid57191925575
dc.contributor.authorDünder, Emre
dc.date.accessioned2025-12-11T00:32:59Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Dunder, Emre] Ondokuz Mayis Univ, Fac Sci, Dept Stat, Samsun, Turkiyeen_US
dc.description.abstractConsistent Akaike information criterion (CAIC) is an adjusted form of classical AIC. This criterion was developed by modifying the penalty. As a result, we propose a novel AIC type criterion, called CAIC (n alpha). The proposed criterion includes a dynamic parameter for controlling the penalty further. The distinctive feature of CAIC (n alpha) is to penalize multicollinearity level considering the information complexity measures. CAIC (n alpha) requires the alpha parameter, and in addition, a procedure is proposed to estimate alpha based on the information complexity of the regression model. Monte Carlo simulations and real data set examples demonstrate that CAIC (n alpha) performs better than classical information criteria for the potential multicollinearity problems.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1080/03610918.2023.2169710
dc.identifier.endpage5017en_US
dc.identifier.issn0361-0918
dc.identifier.issn1532-4141
dc.identifier.issue10en_US
dc.identifier.scopus2-s2.0-85147424654
dc.identifier.scopusqualityQ3
dc.identifier.startpage5008en_US
dc.identifier.urihttps://doi.org/10.1080/03610918.2023.2169710
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37304
dc.identifier.volume53en_US
dc.identifier.wosWOS:000923114700001
dc.identifier.wosqualityQ3
dc.institutionauthorDünder, Emre
dc.language.isoenen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofCommunications in Statistics-Simulation and Computationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInformation Criteriaen_US
dc.subjectModel Selectionen_US
dc.subjectRegression Modelingen_US
dc.titleA Hybridized Consistent Akaike Type Information Criterion for Regression Models in the Presence of Multicollinearityen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files