Publication:
Comparative Study of Missing Data Imputation Methods in Functional Data Analysis

dc.authorscopusid57742708900
dc.authorscopusid57194769905
dc.authorscopusid57302636000
dc.authorwosidSağlam, Fatih/Aaa-4146-2022
dc.authorwosidSözen, Çağlar/Adk-8792-2022
dc.contributor.authorSozen, Caglar
dc.contributor.authorSaglam, Fatih
dc.contributor.authorSozen, Mervenur
dc.date.accessioned2025-12-11T00:45:20Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sozen, Caglar] Giresun Univ, Dept Banking & Finance, Giresun, Turkiye; [Saglam, Fatih; Sozen, Mervenur] Ondokuz Mayis Univ, Dept Stat, Samsun, Turkiyeen_US
dc.description.abstractRecent technological advancements have enabled the analysis of high-dimensional data, where each data point is assumed to represent a sample from an underlying continuous function. Functional data analysis (FDA) is a method developed to study these underlying functional forms. Missing data is commonly encountered in FDA, yet imputation methods tailored to functional data remain an underexplored area. This study investigates the impact of various missing data imputation methods on functional data by sampling missing values from two datasets: the daily average temperature of 18 cities in Turkey's Black Sea region and the stock values traded in Borsa Istanbul. A Fourier basis function approach was used for the periodic temperature data, while a B-Spline basis function approach was applied to the non-periodic stock data. Using multiple imputation methods, including MI Amelia, MICE Random Forest, and Kalman filtering, the missing data were estimated, and each method's performance was evaluated through multiple comparison tests. Findings reveal significant performance variations across imputation methods depending on the missing data rate, with certain methods consistently outperforming others. This study provides a comparative analysis, offering valuable insights for selecting appropriate imputation methods in FDA based on data structure and missing rate.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s40995-025-01858-2
dc.identifier.issn2731-8095
dc.identifier.issn2731-8109
dc.identifier.scopus2-s2.0-105015712830
dc.identifier.scopusqualityQ4
dc.identifier.urihttps://doi.org/10.1007/s40995-025-01858-2
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38955
dc.identifier.wosWOS:001570169300001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSpringer Int Publ Agen_US
dc.relation.ispartofIranian Journal of Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFunctional Dataen_US
dc.subjectFunctional Data Analysisen_US
dc.subjectBasis Functionen_US
dc.subjectMissing Dataen_US
dc.subjectData Imputationen_US
dc.titleComparative Study of Missing Data Imputation Methods in Functional Data Analysisen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files