Publication: Üç Boyutlu Yazıcı İle Üretilen Farklı Protez Kaide Materyallerinin Bükülme ve Tamir Dayanımı Açısından Karşılaştırılması
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Amaç: Bu in-vitro tez çalışmasında, eklemeli üretim tekniği kullanılarak üretilen kimyasal yapısı farklı üç kaide materyalinin termal yaşlandırma öncesi ve sonrası bükülme dayanımlarının ve ardından farklı yüzey işlemleri kullanılarak yapılan tamir işlemleri sonrasında tamir dayanımlarının karşılaştırılması amaçlanmıştır. Materyal ve Metot: Üç farklı kimyasal yapıya sahip kaide rezini, Polimetil metakrilat (PMMA) içerikli (ASIGA), Oligomer içerikli (EnvisionTEC) ve metakrilat (MMA) içermeyen (DentaFab) kullanıldı. Toplamda 120 adet örnek 64×10×3.3±2 mm ebatında hazırlandı. Termal devirlendirme ile yaşlandırmanın etkisinin incelenmesi için her üç kaide materyalinden hazırlanan 20'şer örneğin yarısı 24 saat distile suda bekletildikten sonra, diğer yarısı ise 5-550C arasında 5000 kez termal devirlendirme işlemine tabi tutulduktan sonra 3 nokta bükme testi uygulanarak bükülme dayanımları tespit edildi. Tamir dayanımı testi öncesinde her üç grubun örnekleri önce termal devirlendirme işlemi ile yaşlandırıldı (n=30). Örnekler tamir işlemi uygulaması amacı ile eğimli ve 0 mm aralıklı olarak ikiye bölündü. Yüzey işlemleriiçin her bir grup 3 alt gruba ayrıldı, negatif kontrol grubuna yüzey işlemi uygulanmadı, diğer iki grubta ise yüzey işlemi olarak Al2O3 ile kumlama ve frez aşındırma uygulandı. Tüm örnekler üretici firmalarına ait 3 boyutlu baskı rezini ile tamir edildi. Ardından tekrar termal devirlendirme işlemi uygulandı ve evrensel test cihazı kullanılarak tamir dayanımının tespiti için 3 nokta bükme testi uygulandı. Yüzey işlemlerinin materyale üzerindeki etkileri taramalı elektron mikroskobu altında incelendi. Elde edilen veriler istatistiksel olarak değerlendirildi (p<0.05). Bulgular: Kaide materyallerinin termal devirlendirme öncesinde bükülme dayanımları karşılaştırıldığında istatistiksel olarak anlamlı fark bulundu (p<0,001). En yüksek bükülme dayanımı PMMA içerikli kaide materyali ile elde edilirken (123,89 ± 7,69 MPa), en düşük değer ise oligomer içerikli kaide materyali (60,86 ± 10,39 MPa) ile elde edildi. Her üç kaide materyalinde de termal devirlendirme yapılan ve yapılmayan gruplar arasında istatistiksel fark bulundu (p<0,001). Her kaide materyalinde tamir için yüzey işlemi uygulanan gruplar, negatif kontrol gruplarına göre daha yüksek bükülme dayanımı gösterdi. (p<0,001). En yüksek tamir dayanımı frez ile yüzey aşındırma işlemi uygulanan gruplarda gözlendi (p<0,001). Sonuç: Termal devirlendirme ile yaşlandırma işlemi tüm kaide materyallerinde bükülme dayanımını olumsuz yönde etkilemiştir. Ayrıca tamir için uygulanan yüzey işlemlerinin kaide materyallerinin tamir dayanımını artırdığı ve frez ile aşındırma yönteminin en yüksek tamir dayanımı sağladığı bulunmuştur. Kaide materyalleri arasından PMMA içerikli kaide materyali daha yüksek bükülme ve tamir dayanımı göstermiştir. Anahtar Kelimeler: Eklemeli üretim, Kaide materyali, bükülme dayanımı, yüzey işlem
Purpose: The purpose of this in-vitro thesis study is to compare the flexural strengths of three denture base materials with different chemical structures produced using the additive manufacturing technique before and after thermal aging, and then to compare the repair strengths after repairs using different surface treatments. Material and Method: Denture base resins with three different chemical structures; PMMA-based (ASIGA), Oligomer-containing (EnvisionTEC) and MMA-free (DentaFab) used to manufacture 3D printed denture bases. A total of 120 specimens were fabricated with dimensions of 64×10×3.3±2 mm. In order to examine the effect of thermal cycling, half of the 20 specimens prepared from each of the three base materials were soaked in distilled water for 24 hours and the other half was subjected to thermal aging for 5000 cycles between 5-550C. Then flexural strengths were determined by applying a 3-point bending test. Before the repair strength test, samples from all three groups were first aged by thermal cycling (n=30). For the repair process specimens were sectioned in half with a 0-mm gap. For surface treatments, each group was divided into 3 subgroups, no surface treatment was applied to the negative control group, the other two groups were treated with sandblasting abrasion with Al2O3 and bur grinding. All specimens were repaired using the same 3D printing material. Then all the repaired specimens further underwent thermocycling. Then a 3-point bending test was applied to determine the repair strength using a universal testing device. Additionally, the effects of surface treatments on the material were examined under a scanning electron microscope. The data obtained were evaluated statistically (p<0.05). Results: The flexural strength of the materials before thermal cycling was found to be statistically significant when compared to each other (p<0.001). The highest flexural strength was recorded in the PMMA-based 3D printing resin group (123.89 ± 7.69 MPa) and the lowest bending strength was recorded in the oligomer-based 3D printing resin group (60.86 ± 10.39 MPa). A statistical difference was found between the groups before and after thermal cycling in all three base materials (p<0.001). All the denture base material groups with surface treatment showed significantly higher flexural strength than the negative control group (p<0.001). Bur grinding provided significantly higher flexural strength after repair than other surface treatments (p<0.001). Conclusion: Thermal cycling process had a negative impact on the flexural strength in all tested groups. In addition, it was found that surface treatments applied for repair increased the repair strength of base materials and the bur grinding method provided the highest repair strength. Among the tested denture base materials PMMA-based 3D printed resin material group exhibited higher flexural and repair strength. Key words: Additive manufacturing, Denture base, flexural strength, surface treatment
Purpose: The purpose of this in-vitro thesis study is to compare the flexural strengths of three denture base materials with different chemical structures produced using the additive manufacturing technique before and after thermal aging, and then to compare the repair strengths after repairs using different surface treatments. Material and Method: Denture base resins with three different chemical structures; PMMA-based (ASIGA), Oligomer-containing (EnvisionTEC) and MMA-free (DentaFab) used to manufacture 3D printed denture bases. A total of 120 specimens were fabricated with dimensions of 64×10×3.3±2 mm. In order to examine the effect of thermal cycling, half of the 20 specimens prepared from each of the three base materials were soaked in distilled water for 24 hours and the other half was subjected to thermal aging for 5000 cycles between 5-550C. Then flexural strengths were determined by applying a 3-point bending test. Before the repair strength test, samples from all three groups were first aged by thermal cycling (n=30). For the repair process specimens were sectioned in half with a 0-mm gap. For surface treatments, each group was divided into 3 subgroups, no surface treatment was applied to the negative control group, the other two groups were treated with sandblasting abrasion with Al2O3 and bur grinding. All specimens were repaired using the same 3D printing material. Then all the repaired specimens further underwent thermocycling. Then a 3-point bending test was applied to determine the repair strength using a universal testing device. Additionally, the effects of surface treatments on the material were examined under a scanning electron microscope. The data obtained were evaluated statistically (p<0.05). Results: The flexural strength of the materials before thermal cycling was found to be statistically significant when compared to each other (p<0.001). The highest flexural strength was recorded in the PMMA-based 3D printing resin group (123.89 ± 7.69 MPa) and the lowest bending strength was recorded in the oligomer-based 3D printing resin group (60.86 ± 10.39 MPa). A statistical difference was found between the groups before and after thermal cycling in all three base materials (p<0.001). All the denture base material groups with surface treatment showed significantly higher flexural strength than the negative control group (p<0.001). Bur grinding provided significantly higher flexural strength after repair than other surface treatments (p<0.001). Conclusion: Thermal cycling process had a negative impact on the flexural strength in all tested groups. In addition, it was found that surface treatments applied for repair increased the repair strength of base materials and the bur grinding method provided the highest repair strength. Among the tested denture base materials PMMA-based 3D printed resin material group exhibited higher flexural and repair strength. Key words: Additive manufacturing, Denture base, flexural strength, surface treatment
Description
Keywords
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
97
