Publication:
New Approaches for Outlier Detection: The Least Trimmed Squares Adjustment

dc.authorscopusid58189699800
dc.authorscopusid36504950300
dc.authorwosidDi̇lmaç, Hasan/Acn-8581-2022
dc.authorwosidSisman, Yasemin/Aac-5787-2019
dc.authorwosidSisman, Yasemin/Aac-5787-2019
dc.contributor.authorDilmac, Hasan
dc.contributor.authorSisman, Yasemin
dc.contributor.authorIDDilmaç, Hasan/0000-0001-6877-8730
dc.contributor.authorIDSisman, Yasemin/0000-0002-6600-0623
dc.date.accessioned2025-12-11T01:21:24Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Dilmac, Hasan; Sisman, Yasemin] Ondokuz Mayis Univ, Dept Geomat Engn, Samsun, Turkiyeen_US
dc.descriptionDilmaç, Hasan/0000-0001-6877-8730; Sisman, Yasemin/0000-0002-6600-0623en_US
dc.description.abstractClassical outlier tests based on the least-squares (LS) have significant disadvantages in some situations. The adjustment computation and classical outlier tests deteriorate when observations include outliers. The robust techniques that are not sensitive to outliers have been developed to detect the outliers. Several methods use robust techniques such as M-estimators, L1- norm, the least trimmed squares etc. The least trimmed squares (LTS) among them have a high-breakdown point. After the theoretical explanation, the adjustment computation has been carried out in this study based on the least squares (LS) and the least trimmed squares (LTS). A certain polynomial with arbitrary values has been used for applications. In this way, the performances of these techniques have been investigated.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.26833/ijeg.996340
dc.identifier.endpage31en_US
dc.identifier.issn2548-0960
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85152957970
dc.identifier.scopusqualityQ2
dc.identifier.startpage26en_US
dc.identifier.trdizinid1181846
dc.identifier.urihttps://doi.org/10.26833/ijeg.996340
dc.identifier.urihttps://search.trdizin.gov.tr/en/yayin/detay/1181846/new-approaches-for-outlier-detection-the-least-trimmed-squares-adjustment
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43180
dc.identifier.volume8en_US
dc.identifier.wosWOS:001048551900004
dc.language.isoenen_US
dc.publisherSelçuk University Pressen_US
dc.relation.ispartofInternational Journal of Engineering and Geosciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectThe Least Squareen_US
dc.subjectOutliersen_US
dc.subjectRobust Estimationen_US
dc.subjectThe Least Trimmed Squaresen_US
dc.titleNew Approaches for Outlier Detection: The Least Trimmed Squares Adjustmenten_US
dc.typeArticleen_US
dspace.entity.typePublication

Files