Publication:
A Data-Driven Approach to Arsenic Classification in Groundwater in Geothermal Systems: Meta-Analysis and Machine Learning Applications in Western Anatolia, Turkiye

dc.authorscopusid59900266700
dc.authorscopusid58312231400
dc.authorscopusid23011278600
dc.authorwosidSomay-Altas, Melis/G-2890-2017
dc.contributor.authorSomay-Altas, Melis
dc.contributor.authorKalkan, Mirkan Yusuf
dc.contributor.authorFawzy, Diaa E.
dc.contributor.authorIDSomay-Altas, Melis/0000-0001-8451-046X
dc.date.accessioned2025-12-11T01:09:13Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Somay-Altas, Melis] Dokuz Eylul Univ, Geol Engn Dept, Izmir, Turkiye; [Kalkan, Mirkan Yusuf] Ondokuz Mayis Univ, Inst Grad Studies, Phys Dept, Samsun, Turkiye; [Fawzy, Diaa E.] Izmir Econ Univ, Aerosp Engn Dept, Izmir, Turkiyeen_US
dc.descriptionSomay-Altas, Melis/0000-0001-8451-046Xen_US
dc.description.abstractWestern Anatolia, T & uuml;rkiye, is renowned for its diverse geothermal resources, encompassing high, medium, and low enthalpy systems. While these systems are valuable for energy production and economic development, they are also associated with significant environmental challenges, particularly high concentration arsenic and boron contamination. This study highlights critical hotspots, including Sandikli (27 mg/L) and Banaz-Hamambogazi (95.64 mg/L), with arsenic levels far exceeding the World Health Organization's (WHO) maximum permissible limit of 10 ppb. Such contamination poses significant risks to water quality, agriculture, and public health, especially in major agricultural provinces like Aydin and Manisa. To address these challenges, machine learning models were applied to classify arsenic concentrations. Ensemble methods, including AdaBoost (ABC) and Extra Trees (ETC) classifiers, consistently outperformed others, showing high accuracy of about 97 % in distinguishing geochemical signatures and predicting arsenic levels. In contrast, the k-Nearest Neighbors Classifier (KNNC) proved less effective, with frequent misclassifications. The combination of machine learning and meta-analysis provided a robust framework for identifying spatial and temporal patterns of contamination, offering valuable insights for environmental monitoring. This approach not only enhanced the understanding of arsenic distribution in geothermal systems but also provided actionable insights for mitigating contamination risks. The findings underscore the importance of combining computational techniques with environmental geochemistry to improve the management of geothermal wastewater. Future research should expand these methodologies to other regions and contaminants, leveraging machine learning to develop more effective environmental protection strategies. This study demonstrates the potential of data-driven approaches to address critical environmental issues and supports sustainable development in geothermal-rich areas.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.pce.2025.103966
dc.identifier.issn1474-7065
dc.identifier.issn1873-5193
dc.identifier.scopus2-s2.0-105005283806
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.pce.2025.103966
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41669
dc.identifier.volume139en_US
dc.identifier.wosWOS:001496887100001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofPhysics and Chemistry of the Earthen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGeothermal Energyen_US
dc.subjectArsenicen_US
dc.subjectContaminationen_US
dc.subjectMeta-Analysisen_US
dc.subjectMachine Learningen_US
dc.subjectWestern Anatoliaen_US
dc.subjectTurkiyeen_US
dc.titleA Data-Driven Approach to Arsenic Classification in Groundwater in Geothermal Systems: Meta-Analysis and Machine Learning Applications in Western Anatolia, Turkiyeen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files