Publication:
Classification Temporal Attribute of EMG Signals

dc.authorscopusid22433319300
dc.authorscopusid55293697100
dc.contributor.authorÖzdemir, A.E.
dc.contributor.authorBüyüklü, Y.Y.
dc.date.accessioned2020-06-21T09:29:02Z
dc.date.available2020-06-21T09:29:02Z
dc.date.issued2012
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Özdemir] Ali Ekber, Ordu Üniversitesi, Ordu, Turkey; [Büyüklü] Yücel Yaşar, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractThere are a considerable number of feature extraction methods to be used for the classification of electromyographic (EMG) signals. These features are obtained from the raw EMG data by time domain and time-frequency domain transformations. Time-frequency domain originated features involve a high computational cost. Hence, for the EMG controlled electromechanical prostheses to be readily usable, time domain features are utilized. Previous studies revealed that for a better utilization of the EMG controlled prostheses, the complete signal processing period should be less than 300 ms. In this study, the classification performances of the features in the time domain will be compared. ANFIS neural network has been preferred as the classification structure in line with the wide experience in the literature. The purpose of this study is to put forward a conceptual viewpoint related to the choice of features to be classified in the work towards EMG controlled prostheses development. © 2012 IEEE.en_US
dc.identifier.doi10.1109/SIU.2012.6204489
dc.identifier.isbn9781467300568
dc.identifier.scopus2-s2.0-84863500869
dc.identifier.urihttps://doi.org/10.1109/SIU.2012.6204489
dc.language.isotren_US
dc.relation.ispartof-- 2012 20th Signal Processing and Communications Applications Conference, SIU 2012en_US
dc.relation.journal2012 20th Signal Processing and Communications Applications Conference, SIU 2012, Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleClassification Temporal Attribute of EMG Signalsen_US
dc.title.alternativeEMG İşaretlerinin Zamansal Nitelikleri Nin Sınıflandırılmasıen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files