Publication:
A Predictive Model for the Risk of Infertility in Men Using Machine Learning Algorithms

dc.authorscopusid58037190000
dc.authorscopusid8639397400
dc.authorscopusid6603476898
dc.authorwosidKarabulut, Erdem/E-9242-2013
dc.authorwosidTomak, Leman/A-4710-2017
dc.contributor.authorKoc, Senem
dc.contributor.authorTomak, Leman
dc.contributor.authorKarabulut, Erdem
dc.contributor.authorIDKarabulut, Erdem/0000-0002-7811-8215
dc.date.accessioned2025-12-11T01:03:40Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Koc, Senem] Nisantasi Univ, Fac Med, Dept Med Stat, Istanbul, Turkey; [Tomak, Leman] Ondokuz Mayis Univ, Fac Med, Dept Biostat, Samsun, Turkey; [Karabulut, Erdem] Hacettepe Univ, Fac Med, Dept Biostat, Ankara, Turkeyen_US
dc.descriptionKarabulut, Erdem/0000-0002-7811-8215;en_US
dc.description.abstractObjective: Infertility is a worldwide problem and causes considerable social, emotional and psychological stress between couples and among families. This study is aimed at determining the machine learning classifier capable of developing the most effective predictive model to determine the risk of infertility in men by genetic and external factors.Materials and Methods: The dataset was collected at Ondokuz Mayis University in the Department of Urology. The model was developed using supervised learning methods and by algorithms like decision tree, K nearest neighbor, Naive bayes, support vector machines, random forest and superlearner. Performances of the classifiers were assessed with the area under the curve.Results: Results of the performance evaluation showed that support vector machines and superlearner algorithms had area under curve of 96% and 97% respectively and this performance outperformed the remaining classifier. According to the results for importance of variables sperm concentration, follicular stimulating hormone and luteinizing hormone and some genetic factors are the important risk factors for infertility.Conclusion: These findings, whenever applied to any patient's record of infertility risk factors, can be used to predict the risk of infertility in men. The predictive model developed can be integrated into existing health information systems which can be used by urologists to predict patients' risk of infertility in real time.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.4274/jus.galenos.2022.2021.0134
dc.identifier.endpage271en_US
dc.identifier.issn2148-9580
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-105022134365
dc.identifier.startpage265en_US
dc.identifier.trdizinid1175687
dc.identifier.urihttps://doi.org/10.4274/jus.galenos.2022.2021.0134
dc.identifier.urihttps://search.trdizin.gov.tr/en/yayin/detay/1175687/a-predictive-model-for-the-risk-of-infertility-in-men-using-machine-learning-algorithms
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41021
dc.identifier.volume9en_US
dc.identifier.wosWOS:000899386100007
dc.language.isoenen_US
dc.publisherGalenos Publ Houseen_US
dc.relation.ispartofJournal of Urological Surgeryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassificationen_US
dc.subjectSuperLearneren_US
dc.subjectPrediction Modelen_US
dc.subjectInfertilityen_US
dc.subjectGenetic Factorsen_US
dc.titleA Predictive Model for the Risk of Infertility in Men Using Machine Learning Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files