Publication:
Comparison of the Results of Response Surface Methodology and Artificial Neural Network for the Biosorption of Lead Using Black Cumin

dc.authorscopusid6506971252
dc.authorscopusid55081976400
dc.authorscopusid6507093902
dc.authorscopusid22953804000
dc.contributor.authorBingöl, D.
dc.contributor.authorHercan Mammad, M.
dc.contributor.authorElevli, S.
dc.contributor.authorKilic, E.
dc.date.accessioned2020-06-21T14:27:48Z
dc.date.available2020-06-21T14:27:48Z
dc.date.issued2012
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Bingöl] Deniz, Department of Chemistry, Kocaeli Üniversitesi, İzmit, Kocaeli, Turkey; [Hercan Mammad] Merve, Department of Chemistry, Kocaeli Üniversitesi, İzmit, Kocaeli, Turkey; [Elevli] Sermin, Department of Industrial Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Kilic] Erdal, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn this study, Response Surface Methodology (RSM) and Artificial Neural Network (ANN) were employed to develop an approach for the evaluation of heavy metal biosorption process. A batch sorption process was performed using Nigella sativa seeds (black cumin), a novel and natural biosorbent, to remove lead ions from aqueous solutions. The effects of process variables which are pH, biosorbent mass, and temperature, on the sorbed amount of lead were investigated through two-levels, three-factors central composite design (CCD). Same design was also utilized to obtain a training set for ANN. The results of two methodologies were compared for their predictive capabilities in terms of the coefficient of determination-R 2 and root mean square error-RMSE based on the validation data set. The results showed that the ANN model is much more accurate in prediction as compared to CCD. © 2012 Elsevier Ltd.en_US
dc.identifier.doi10.1016/j.biortech.2012.02.084
dc.identifier.endpage115en_US
dc.identifier.issn0960-8524
dc.identifier.issn1873-2976
dc.identifier.pmid22425399
dc.identifier.scopus2-s2.0-84859210007
dc.identifier.scopusqualityQ1
dc.identifier.startpage111en_US
dc.identifier.urihttps://doi.org/10.1016/j.biortech.2012.02.084
dc.identifier.urihttps://hdl.handle.net/20.500.12712/16555
dc.identifier.volume112en_US
dc.identifier.wosWOS:000302971200015
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofBioresource Technologyen_US
dc.relation.journalBioresource Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Network (ANN)en_US
dc.subjectBiosorptionen_US
dc.subjectBlack Cuminen_US
dc.subjectLead Removalen_US
dc.subjectResponse Surface Methodology (RSM)en_US
dc.titleComparison of the Results of Response Surface Methodology and Artificial Neural Network for the Biosorption of Lead Using Black Cuminen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files