Publication: Grafen-Si3N4 Takviyeli Titanyum Hibrit Kompozit ile Prototip İmplant Üretimi
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Abstract
Bu çalışmada, titanyum-grafen, titanyum-silisyum nitrür (Si3N4) ve titanyum-Si3N4-grafen (Gr) katkılı hibrit kompozitler toz metalürjisi yöntemi ile üretilmiştir. Grafen (ağ.% 0.15, 0.3, 0.45, 0.60) ve Si3N4 (ağ. %1, 3, 5, 7, 9) titanyum matrise takviye edilmiştir. Farklı partikül takviyelerinin kompozitlerin yoğunluğuna, gözenekliliğine, mekanik özelliklerine (Vickers sertliğine, basma gerilimine, çekme gerilimine), aşınma direncine ve mikroyapısına olan etkisi incelenmiştir. Titanyum-grafen kompozitlerde en uygun sinterleme sıcaklığı ve süresi 1100oC ve 120 dk. olarak elde edilmiş olup, bütün kompozitlere aynı sinterleme sıcaklığı ve süresi uygulanmıştır. Ti-Gr kompozitinde en yüksek yoğunluk (4.39 g/cm3), sertlik (566 HV) ve maksimum basma gerilimi değerlerinin (845 MPa) ağ.%0.15 grafen katkılı kompozitte elde edildiği görülmüştür. Ti-Si3N4 kompozitlerde, en yüksek deneysel yoğunluk (4.33 g/cm3), vickers sertliği (698.5 HV0.5) ve en düşük aşınma oranı değeri (W=1.36x10-5 mm3/Nm) ağ.%3 Si3N4 katkılı titanyum kompozitte elde edilmiştir. Si3N4 katkısının belli bir orana kadar (ağ. %3) mekanik özellikleri iyileştirdiği gözlenmiştir. Çalışmada, Ti-Si3N4 kompozitinde en yüksek mekanik değerlerin elde edildiği ağ.%3 Si3N4 katkı oranı sabit tutulup, değişen grafen katkı oranlarında (ağ. %0.15, 0.3, 0.45, 0.60) hibrit kompozitler (Ti-Si3N4-Gr) üretilmiştir. En iyi deneysel yoğunluk (4.41g/cm3), Vickers sertlik (634.4 HV0.5) ve aşınma oranı (W=4.7x10-5mm3/Nm) değerleri ağ. % 3 Si3N4 ve ağ. % 0.15 Gr katkılı hibrit kompozitte elde edilmiştir. En iyi sonuçların elde edildiği hibrit kompozitlerden prototip implant üretilip, yüzeyi elektrosprey kaplama yöntemiyle kaplanmıştır. Hidroksiapatit ve kitosan (biyouyumlu malzemeler) implant yüzeyine kaplanmıştır. Kaplanmış implantlara yapay vücut sıvısı testleri yapılarak endüstriyel alanda uygunlukları test edilmiştir.
In this thesis titanium graphene (Gr), titanium-silicon nitride (Si3N4) titanium-Si3N4-Gr hybrid composites are produced via powder metallurgy method. Graphene with 0.15, 0.3, 0.45, 0.60 wt.% and Si3N4 with 1, 3, 5, 7, 9 wt% are added to titanium matrix. Different particles' effects to the density, porosity, mechanical properties (Vickers hardness, compressive-tensile strength), wear resistance and microstructure of the composites were investigated. The most suitable sintering temperature and time in Ti-Gr composites is 1100oC and 120 min. This temperature and time were applied to all composites. In Ti-graphene composite, the highest density (4.39 g/cm3), hardness (566 HV0.5), maximum compressive strength (845 MPa) values were obtained in 0.15 wt.% Gr added composite. In Ti- Si3N4 composite, the highest experimental density (4.33 g/cm3), hardness (698.5 HV0.5) and wear ratio value (W=1.36x10-5 mm3/Nm) are obtained for 3 wt.% Si3N4 titanium composite. It was seen that up to a specified Si3N4 addition (3 wt.%), it enhanced the mechanical properties. Varying graphene ratios (0.15, 0.3, 0.45, 0.60 wt.%) added hybrid composites (Ti-Si3N4-Gr) were produced with fixed 3 wt.% Si3N4 ratio. The highest density (4.41 g/cm3), hardness (634.4 HV0.5) and wear ratio (W=4.7x10-5 mm3/Nm) values are obtained for Ti-3wt.% Si3N4- 0.15wt.% Gr hybrid composite. Prototype implants were produced from the hybrid composites that have highest values and electrospray coating were applied to the surfaces of these prototype implants. Hydroxyapatite and chitosan (biocompatible materials) are applied to material surface and then coated materials were tested for their suitability in the industrial area by performing artificial body fluid tests.
In this thesis titanium graphene (Gr), titanium-silicon nitride (Si3N4) titanium-Si3N4-Gr hybrid composites are produced via powder metallurgy method. Graphene with 0.15, 0.3, 0.45, 0.60 wt.% and Si3N4 with 1, 3, 5, 7, 9 wt% are added to titanium matrix. Different particles' effects to the density, porosity, mechanical properties (Vickers hardness, compressive-tensile strength), wear resistance and microstructure of the composites were investigated. The most suitable sintering temperature and time in Ti-Gr composites is 1100oC and 120 min. This temperature and time were applied to all composites. In Ti-graphene composite, the highest density (4.39 g/cm3), hardness (566 HV0.5), maximum compressive strength (845 MPa) values were obtained in 0.15 wt.% Gr added composite. In Ti- Si3N4 composite, the highest experimental density (4.33 g/cm3), hardness (698.5 HV0.5) and wear ratio value (W=1.36x10-5 mm3/Nm) are obtained for 3 wt.% Si3N4 titanium composite. It was seen that up to a specified Si3N4 addition (3 wt.%), it enhanced the mechanical properties. Varying graphene ratios (0.15, 0.3, 0.45, 0.60 wt.%) added hybrid composites (Ti-Si3N4-Gr) were produced with fixed 3 wt.% Si3N4 ratio. The highest density (4.41 g/cm3), hardness (634.4 HV0.5) and wear ratio (W=4.7x10-5 mm3/Nm) values are obtained for Ti-3wt.% Si3N4- 0.15wt.% Gr hybrid composite. Prototype implants were produced from the hybrid composites that have highest values and electrospray coating were applied to the surfaces of these prototype implants. Hydroxyapatite and chitosan (biocompatible materials) are applied to material surface and then coated materials were tested for their suitability in the industrial area by performing artificial body fluid tests.
Description
Tez (doktora) -- Ondokuz Mayıs Üniversitesi, 2019
Libra Kayıt No: 127259
Libra Kayıt No: 127259
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
138
