Publication:
Accurate Estimation of Sorghum Crop Water Content under Different Water Stress Levels Using Machine Learning and Hyperspectral Data

dc.authorscopusid57204446671
dc.authorscopusid24344113900
dc.authorscopusid57214484479
dc.authorscopusid56868366700
dc.authorscopusid58341089000
dc.authorwosidAkay, Hasan/T-9305-2018
dc.authorwosidÖztürk Ay, Elif/Jvo-9724-2024
dc.authorwosidTunca, Emre/Iqt-3077-2023
dc.authorwosidCetin Taner, Sakine/Juv-5054-2023
dc.authorwosidKoksal, Eyup/Ixd-8732-2023
dc.contributor.authorTunca, Emre
dc.contributor.authorKoksal, Eyup Selim
dc.contributor.authorOzturk, Elif
dc.contributor.authorAkay, Hasan
dc.contributor.authorTaner, Sakine Cetin
dc.contributor.authorIDAkay, Hasan/0000-0003-1198-8686
dc.contributor.authorIDTunca, Emre/0000-0001-6869-9602
dc.date.accessioned2025-12-11T01:21:59Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Tunca, Emre] Duzce Univ, Fac Agr, Dept Biosyst Engn, Duzce, Turkiye; [Koksal, Eyup Selim; Taner, Sakine Cetin] Ondokuz Mayis Univ, Fac Agr, Dept Agr Struct & Irrigat, Samsun, Turkiye; [Ozturk, Elif; Akay, Hasan] Ondokuz Mayis Univ, Fac Agr, Dept Field Crops, Samsun, Turkiyeen_US
dc.descriptionAkay, Hasan/0000-0003-1198-8686; Tunca, Emre/0000-0001-6869-9602;en_US
dc.description.abstractThis study investigates the effects of different water stress levels on spectral information, leaf area index (LAI), and the performance of three machine learning (ML) algorithms in estimating crop water content (CWC) of sorghum. The results show that the spectral reflectance of sorghum varies with growth stage and irrigation treatment, but consistent patterns are observed for each treatment. The LAI of sorghum gradually increased throughout the growth stages, with the most significant variation observed during the flowering stage. In this study, three machine learning-based regression models, namely, extreme gradient boosting (XGBoost), random forest (RF), and support vector machine (SVM), were utilized to estimate sorghum CWC using hyperspectral measurements. Recursive feature elimination (RFE) method was used to select the optimal spectral reflectance wavelengths for the ML models, and principal component analysis (PCA) was used to reduce the dimensionality of the hyperspectral data. The results indicated that the RF model achieved the highest R-2 (0.90) and lowest of RMSE (56.05) value using selected wavelengths, while the XGBoost model demonstrated superior accuracy and reliability in estimating CWC using dimensionality-reduced hyperspectral data (r = 0.96, RMSE = 45.77). Also, the study highlights the importance of vegetation index (VI) in CWC estimate. Some VIs, such as NDVI and MSAVI, performed poorly, while others, such as CL_Rededge and EVI, performed better. The study provides valuable insights into the effects of water stress levels on spectral information, LAI, and the performance of ML algorithms in estimating the CWC of sorghum. The findings have significant implications for precision agriculture, as accurate and reliable estimates of CWC can help farmers optimize irrigation and fertilizer applications, leading to improved crop yields and resource efficiency.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey [118O831]en_US
dc.description.sponsorshipThis study was supported by The Scientific and Technological Research Council of Turkey (118O831).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s10661-023-11536-8
dc.identifier.issn0167-6369
dc.identifier.issn1573-2959
dc.identifier.issue7en_US
dc.identifier.pmid37353582
dc.identifier.scopus2-s2.0-85162745100
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s10661-023-11536-8
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43275
dc.identifier.volume195en_US
dc.identifier.wosWOS:001018570500007
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofEnvironmental Monitoring and Assessmenten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCrop Water Contenten_US
dc.subjectHyperspectralen_US
dc.subjectMLen_US
dc.subjectLAIen_US
dc.subjectVegetation Indicesen_US
dc.titleAccurate Estimation of Sorghum Crop Water Content under Different Water Stress Levels Using Machine Learning and Hyperspectral Dataen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files