Publication:
Insights Into the Behavior of the Damped Parametric Oscillator: Analytical and Numerical Perspectives

dc.authorwosidAsad, Jihad/P-2975-2016
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.authorwosidAsad, Jihad/F-5680-2011
dc.contributor.authorJarrar, Rabab
dc.contributor.authorFlorea, Olivia
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorShanak, Hussein
dc.contributor.authorAsad, Jihad
dc.contributor.authorIDAsad, Jihad/0000-0002-6862-1634
dc.date.accessioned2025-12-11T00:51:55Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Jarrar, Rabab; Shanak, Hussein; Asad, Jihad] Palestine Tech Univ Kadoorie, Fac Appl Sci, Dept Phys, POB 7 Java St, Tulkarm 305, Palestine; [Florea, Olivia] Transilvania Univ Brasov, Dept Math & Comp Sci, Brasov, Romania; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, Samsun, Turkiyeen_US
dc.descriptionAsad, Jihad/0000-0002-6862-1634;en_US
dc.description.abstractIn this study, we analyze the behavior of a damped parametric oscillator, incorporating a damping factor to examine its influence on system dynamics. We derive the equation of motion using the Lagrangian formulation and the Euler-Lagrange equation, which leads to a nonlinear differential equation governing the system's motion. The equation is solved numerically using the 4th-order Runge-Kutta method and analytically using the Multistep Differential Transformation Method (MS-DTM), which provides an efficient and accurate approximation. The results obtained from MS-DTM are in good agreement with the numerical solutions, demonstrating its capability to capture the system's dynamics with reduced computational effort. By analyzing two distinct scenarios-one with a small damping coefficient (beta = 0.01) and the other with a larger damping coefficient (beta = 0.5)-we observe that the damping parameter significantly influences system behavior. Specifically, in the first scenario, the system exhibits stable damped harmonic motion with constant energy, while in the second scenario, the system experiences energy dissipation and becomes unstable. This study highlights the critical role of damping in determining the system's stability and energy dissipation, showcasing the effectiveness of both MS-DTM and numerical methods in analyzing nonlinear oscillatory systems.en_US
dc.description.sponsorshipPalestine Technical University-Kadoorieen_US
dc.description.sponsorshipThe authors Rabab Jarrar, and Jihad Asad would like to thank Palestine Technical University-Kadoorie for supporting them during this research.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.1177/14727978251361398
dc.identifier.issn1472-7978
dc.identifier.issn1875-8983
dc.identifier.scopusqualityQ4
dc.identifier.urihttps://doi.org/10.1177/14727978251361398
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39799
dc.identifier.wosWOS:001530948200001
dc.language.isoenen_US
dc.publisherSage Publications Incen_US
dc.relation.ispartofJournal of Computational Methods in Sciences and Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDamped Parametric Oscillatoren_US
dc.subjectLagrangian Methoden_US
dc.subjectEquation of Motionen_US
dc.subjectNonlinearen_US
dc.subjectRunge-Kuttaen_US
dc.titleInsights Into the Behavior of the Damped Parametric Oscillator: Analytical and Numerical Perspectivesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files