Publication:
Pythagorean Fuzzy SWARA Weighting Technique for Soil Quality Modeling of Cultivated Land in Semi-Arid Terrestrial Ecosystems

dc.authorscopusid57219268557
dc.authorscopusid56297811900
dc.authorscopusid24829167700
dc.authorscopusid16052385200
dc.authorwosidDengiz, Orhan/Abg-7284-2020
dc.authorwosidKaraca, Siyami/Grr-8400-2022
dc.authorwosidAlaboz, Pelin/Abf-5309-2020
dc.contributor.authorSargin, Bulut
dc.contributor.authorAlaboz, Pelin
dc.contributor.authorKaraca, Siyami
dc.contributor.authorDengiz, Orhan
dc.contributor.authorIDAlaboz, Pelin/0000-0001-7345-938X
dc.date.accessioned2025-12-11T00:51:26Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sargin, Bulut; Karaca, Siyami] Van Yuzuncu Yil Univ, Fac Agr, Dept Soil Sci, Van, Turkiye; [Sargin, Bulut; Karaca, Siyami] Van Yuzuncu Yil Univ, Fac Agr, Plant Nutr Dept, Van, Turkiye; [Alaboz, Pelin] Isparta Univ Appl Sci, Fac Agr, Dept Soil Sci & Plant Nutr, Isparta, Turkiye; [Dengiz, Orhan] Ondokuz Mayis Univ, Fac Agr, Dept Soil Sci & Plant Nutr, Samsun, Turkiyeen_US
dc.descriptionAlaboz, Pelin/0000-0001-7345-938Xen_US
dc.description.abstractCurrently, the assessment of soil quality and creating digital soil maps are crucial for sustainable land management. In the present study, the main objective is to evaluate soil quality around Lake Van's agricultural areas using Pythagorean Fuzzy SWARA (PF-SWARA) weighting for soil indicator assessment. Additionally, the predictability of soil quality is demonstrated through spatial distribution maps using random forest (RF) and artificial neural network (ANN) algorithms. PF-SWARA weighting assigns higher weights to indicators of physical quality. Soil quality index (SQI) values for the study area range between 0.36 and 0.74, classified as "from very low to high." RF and ANN models provide Lin's concordance correlation coefficient (LCCC) values of 0.93 and 0.87, respectively, for soil quality prediction. The RF model exhibits the lowest error rate (root mean square error (RMSE): 0.03; mean absolute percentage error (MAPE): 4.51%). The RF algorithm identified pH, available phosphorus, organic matter, CaCO3 and electrical conductivity as the most effective soil properties for estimating SQI. Ordinary Kriging geostatistical interpolation is identified as the interpolation method with the lowest RMSE value based on observed and predicted values' spatial distribution maps using Gaussian semivariogram from the geostatistical model. The study concludes that machine learning algorithms can be utilized alongside PF-SWARA approaches for digital soil quality mapping.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.compag.2024.109466
dc.identifier.issn0168-1699
dc.identifier.issn1872-7107
dc.identifier.scopus2-s2.0-85205807805
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.compag.2024.109466
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39732
dc.identifier.volume227en_US
dc.identifier.wosWOS:001334952800001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofComputers and Electronics in Agricultureen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDigital Soil Mappingen_US
dc.subjectSoil Qualityen_US
dc.subjectMulti-Criteria Decision Makingen_US
dc.subjectMachine Learningen_US
dc.titlePythagorean Fuzzy SWARA Weighting Technique for Soil Quality Modeling of Cultivated Land in Semi-Arid Terrestrial Ecosystemsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files