Publication:
Multipliers and the Relative Completion in L-w(p)(G)

dc.contributor.authorDuyar, C.
dc.contributor.authorGurkanli, A. T.
dc.date.accessioned2020-06-21T15:24:37Z
dc.date.available2020-06-21T15:24:37Z
dc.date.issued2007
dc.departmentOMÜen_US
dc.department-temp[Duyar, C. -- Gurkanli, A. T.] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Math, TR-55139 Kurupelit, Turkey --en_US
dc.description.abstractQuek and Yap defined a relative completion A for a linear subspace A of L-p(G), 1 <= p < infinity; and proved that there is an isometric isomorphism, between HOML1(G),(L-1(G), A) and <(A)over tilde>, where Hom(L1(G))(L-1(G),A) is the space of the module homomorphisms (or multipliers) from L-1(G) to A. In the present, we defined a relative completion for a linear subspace (A) over tilde of L-w(p)(G) where w is a Beurling's weighted function and LP.(G) is the weighted LP(G) space, ([14]). Also, we proved that there is an algeabric isomorphism and homeomorphism, between Hom(Lw1(G))(L-w(1)(G), A) and (A) over tilde. At the end of this work we gave some applications and examples.en_US
dc.identifier.endpage191en_US
dc.identifier.issn1300-0098
dc.identifier.issn1303-6149
dc.identifier.issue2en_US
dc.identifier.startpage181en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12712/20280
dc.identifier.volume31en_US
dc.identifier.wosWOS:000254995200006
dc.language.isoenen_US
dc.publisherScientific Technical Research Council Turkey-TÜBİTAKen_US
dc.relation.journalTurkish Journal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectModule Homomorphism (or Multiplier)en_US
dc.subjectRelative Completionen_US
dc.subjectEssential Moduleen_US
dc.subjectWeighted L-p(G) Space. 1991 AMS Subject Classification Codes 43en_US
dc.titleMultipliers and the Relative Completion in L-w(p)(G)en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files