Publication:
Dynamics of COVID-19 Epidemic via Two Different Fractional Derivatives

dc.authorscopusid57217132593
dc.authorscopusid16303495600
dc.authorscopusid55363702400
dc.authorscopusid56051853500
dc.authorscopusid57189212883
dc.authorscopusid56715663200
dc.authorwosidNisar, Kottakkaran/F-7559-2015
dc.authorwosidHamadjam, Abboubakar/Aaf-8446-2021
dc.authorwosidInc, Mustafa/C-4307-2018
dc.authorwosidKumar, Pushpendra/Aaa-1223-2021
dc.authorwosidVenkatesan, Govindaraj/Aaa-3722-2022
dc.authorwosidErturk, Vedat Suat/Abd-4512-2021
dc.contributor.authorKumar, Pushpendra
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorGovindaraj, V
dc.contributor.authorInc, Mustafa
dc.contributor.authorAbboubakar, Hamadjam
dc.contributor.authorNisar, Kottakkaran Sooppy
dc.contributor.authorIDKumar, Pushpena/0000-0002-7755-2837
dc.contributor.authorIDVenkatesan, Govindaraj/0000-0002-6564-5358
dc.date.accessioned2025-12-11T01:23:20Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kumar, Pushpendra; Govindaraj, V] Natl Inst Technol Puducherry, Dept Math, Karaikal 609609, India; [Erturk, Vedat Suat] Ondokuz Mayis Univ, Dept Math, TR-55200 Atakum, Samsun, Turkey; [Inc, Mustafa] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey; [Inc, Mustafa] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Abboubakar, Hamadjam] Univ Ngaoundere, Univ Inst Technol Ngaoundere, Dept Comp Engn, POB 455, Ngaoundere, Cameroon; [Nisar, Kottakkaran Sooppy] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabiaen_US
dc.descriptionKumar, Pushpena/0000-0002-7755-2837; Venkatesan, Govindaraj/0000-0002-6564-5358;en_US
dc.description.abstractIn December 2019, the novel Coronavirus, also known as 2019-nCoV or SARS-CoV-2 or COVID-19, was first recognized as a deadly disease in Wuhan, China. In this paper, we analyze two different nonclassical Coronavirus models to observe the outbreaks of this disease. Caputo and Caputo-Fabrizio (C-F) fractional derivatives are considered to simulate the given epidemic models by using two separate methods. We perform all required graphical simulations with the help of real data to demonstrate the behavior of the proposed systems. We observe that the given schemes are highly effective and suitable to analyze the dynamics of Coronavirus. We find different natures of the given model classes for both Caputo and C-F derivative sense. The main contribution of this study is to propose a novel framework of modeling to show how the fractional-order solutions can describe disease dynamics much more clearly as compared to integer-order operators. The motivation to use two different fractional derivatives, Caputo (singular-type kernel) and Caputo-Fabrizio (exponential decay-type kernel) is to explore the model dynamics under different kernels. The applications of two various kernel properties on the same model make this study more effective for scientific observations.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.1142/S1793962323500071
dc.identifier.issn1793-9623
dc.identifier.issn1793-9615
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85132743462
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1142/S1793962323500071
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43357
dc.identifier.volume14en_US
dc.identifier.wosWOS:000849400700004
dc.language.isoenen_US
dc.publisherWorld Scientific Publishing Co Pte Ltden_US
dc.relation.ispartofInternational Journal of Modeling Simulation and Scientific Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCoronavirus/COVID-19en_US
dc.subjectMathematical Modelen_US
dc.subjectNumerical Solutionen_US
dc.subjectCaputo and Caputo-Fabrizio Fractional Derivativesen_US
dc.subjectExistence and Uniquenessen_US
dc.titleDynamics of COVID-19 Epidemic via Two Different Fractional Derivativesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files