Publication:
Lineer Olmayan Denklemlerin Adomian Ayrıştırma Metodu ile Çözümleri

dc.contributor.advisorDemir, Hüseyin
dc.contributor.authorPiyade, Merve
dc.date.accessioned2020-07-21T21:40:38Z
dc.date.available2020-07-21T21:40:38Z
dc.date.issued2012
dc.departmentOMÜ, Fen Bilimleri Enstitüsü, Matematik Anabilim Dalıen_US
dc.departmentFen Bilimleri Enstitüsü / Matematik Ana Bilim Dalı
dc.descriptionTez (yüksek lisans) -- Ondokuz Mayıs Üniversitesi, 2012en_US
dc.descriptionLibra Kayıt No: 73569en_US
dc.description.abstractBu tezde, George Adomian (1922-1996) tarafından tasarlanmış ve geliştirilmiş olan Adomian ayrıştırma metodu sunulacaktır. Diferansiyel denklemlerin çözümünde son yıllarda daha fazla dikkat çeken bu metot oldukça kullanışlı olduğundan çoğu kaynakta metoda atıfta bulunulmuştur. Gerçekten de bu metot lineerleştirme, pertürbasyon ya da herhangi bir kabule gerek kalmadan çözümlerin bulunmasına olanak sağlar.Adomian ayrıştırma metodu lineer olmayan diferansiyel denklemlerin çözümleri için teori ve tanımları ile birlikte ifade edildi. Çeşitli fiziksel modellerde ortaya çıkan bazı lineer olmayan kısmi diferansiyel denklemlerin çözümünde başarıyla kullanıldı. Metot güçlü, etkili ve hızlı yakınsayan çözümler sundu ve bu nedenle pek çok önemli avantaj sağladı. Daha sonra, elde edilen çözümler diferansiyel dönüşüm metodundan bulunan sonuçlarla karşılaştırıldı. Bu sonuçlar Adomian ayrıştırma metodunun uygulanabilirliğini gösterdi ve çözümler grafiksel olarak verildi. Son olarak, aynı denklemlerin çözümü için diferansiyel dönüşüm metodu uygulanarak Maple algoritması verildi.
dc.description.abstractIn this thesis Adomian decomposition method which was introduced and developed by George Adomian (1922-1996) will be presented. The method is very useful, well addressed in many references and has been receiving much attention in recent years in the solution of differential equations. In fact, this method allows finding the solution without using linearization, perturbation or any other assumption.Adomian decomposition method is presented for solving nonlinear differential equation with its theories and definitions. The method is successfully used to illustrate for some nonlinear partial differential equations that appear in several physical models. The method presented to be powerful, effective and demonstrates fast convergence of the solution and therefore provides several significant advantages. Then, some results are obtained and discussed to compare with the solutions of partial differential equations which obtained from differential transform method. The results confirmed the applicability of Adomian decomposition method and the solutions are given graphically. Finally, Maple algorithms are given to solve the same equations by applying differential transformation method.en_US
dc.formatVI, 58 y. : şekil ; 30 smen_US
dc.identifier.endpage67
dc.identifier.urihttps://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=EEdeQgIdFRxX5NbvVau-ArMg7ER_cFBhdKuUHxL1WN6KJcyr5s9UlgkdRi_29NYJ
dc.identifier.urihttp://libra.omu.edu.tr/tezler/73569.pdf
dc.identifier.yoktezid306901
dc.language.isotren_US
dc.language.isotr
dc.publisherOndokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US]
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMatematik
dc.subjectAdomian Ayrıştırma Yöntemi
dc.subjectBurgers Denklemi
dc.subjectDoğrusal Olmayan Denklemler
dc.subjectKlein-Gordon Denklemi
dc.subjectMathematicsen_US
dc.subjectKorteweg-De Vries
dc.subjectAdomian Decomposition Methoden_US
dc.subjectBurgers Equationen_US
dc.subjectNonlinear Equationsen_US
dc.subjectKlein-Gordon Equipmenten_US
dc.subjectKorteweg-de Vriesen_US
dc.subject.otherTEZ YÜK LİS P695l 2012en_US
dc.titleLineer Olmayan Denklemlerin Adomian Ayrıştırma Metodu ile Çözümleri
dc.titleThe Solutions of the Non-Linear Equations by Adomian Decomposition Methoden_US
dc.typeMaster Thesisen_US
dspace.entity.typePublication

Files