Publication:
Type-1 Fuzzy Time Series Function Method Based on Binary Particle Swarm Optimisation

dc.authorscopusid23092915500
dc.authorscopusid24282075600
dc.authorscopusid23093703600
dc.authorscopusid7006717125
dc.contributor.authorAladag, C.H.
dc.contributor.authorYolcu, U.
dc.contributor.authorEgrioglu, E.
dc.contributor.authorTürkşen, I.B.
dc.date.accessioned2020-06-21T09:42:49Z
dc.date.available2020-06-21T09:42:49Z
dc.date.issued2016
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aladag] Cagdas Hakan, Department of Statistics, Hacettepe Üniversitesi, Ankara, Turkey; [Yolcu] Ufuk, Department of Statistics, Ankara Üniversitesi, Ankara, Turkey; [Egrioglu] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Türkşen] Ismail Burhan, Department of Industrial Engineering, TOBB University of Economics and Technology, Ankara, Turkeyen_US
dc.description.abstractFor time series forecasting four kinds of fuzzy-based approaches can be used. These are fuzzy regression techniques, fuzzy time series methods, fuzzy inference systems, and fuzzy function approaches. There are some major problems in using fuzzy regression techniques and fuzzy inference systems for time series forecasting. Therefore, it would be wise to use a forecasting approach which combines fuzzy time series and fuzzy function approaches. In this study, a fuzzy time series forecasting method based on fuzzy function approach is proposed by adopting fuzzy function approach to time series forecasting. And, the proposed approach is called type-1 fuzzy time series function approach. Also, in the proposed approach, the lagged variables of the system are determined by using binary particle swarm optimisation. In order to evaluate the performance of the proposed method, it has been applied to well-known time series of Australian beer consumption and Istanbul stock exchange dataset. © 2016 Inderscience Enterprises Ltd.en_US
dc.identifier.doi10.1504/IJDATS.2016.075970
dc.identifier.endpage13en_US
dc.identifier.issn1755-8050
dc.identifier.issn1755-8069
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-84978394372
dc.identifier.scopusqualityQ4
dc.identifier.startpage2en_US
dc.identifier.urihttps://doi.org/10.1504/IJDATS.2016.075970
dc.identifier.volume8en_US
dc.language.isoenen_US
dc.publisherInderscience Enterprises Ltd.en_US
dc.relation.ispartofInternational Journal of Data Analysis Techniques and Strategiesen_US
dc.relation.journalInternational Journal of Data Analysis Techniques and Strategiesen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectFuzzy Functionsen_US
dc.subjectFuzzy Time Seriesen_US
dc.subjectFuzzy Time Series Functionen_US
dc.subjectParticle Swarm Optimisationen_US
dc.titleType-1 Fuzzy Time Series Function Method Based on Binary Particle Swarm Optimisationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files