Publication:
Anomaly Detection with Machine Learning Models Using API Calls

dc.authorscopusid59390316900
dc.authorscopusid57212210447
dc.authorscopusid57212212990
dc.authorscopusid15833929800
dc.authorwosidAkleylek, Sedat/D-2090-2015
dc.contributor.authorSahin, Varol
dc.contributor.authorSatilmis, Hami
dc.contributor.authorYazar, Bilge Kagan
dc.contributor.authorAkleylek, Sedat
dc.contributor.authorIDYazar, Bilge Kağan/0000-0003-2149-142X
dc.contributor.authorIDAkleylek, Sedat/0000-0001-7005-6489
dc.contributor.authorIDSatılmış, Hami/0000-0002-6611-7549
dc.date.accessioned2025-12-11T01:29:55Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sahin, Varol; Satilmis, Hami; Yazar, Bilge Kagan] Ondokuz Mayis Univ, Samsun, Turkiye; [Akleylek, Sedat] Istinye Univ, Dept Comp Engn, Istanbul, Turkiye; [Akleylek, Sedat] Univ Tartu, Tartu, Estoniaen_US
dc.descriptionYazar, Bilge Kağan/0000-0003-2149-142X; Akleylek, Sedat/0000-0001-7005-6489; Satılmış, Hami/0000-0002-6611-7549en_US
dc.description.abstractMalware is malicious code developed to damage telecommunications and computer systems. Many malware causes anomaly events, such as occupying the systems' resources, such as CPU and memory, or preventing their use. Malware causing these events can hide their destructive activities. Therefore, monitoring their behavior to detect and block such malicious software is necessary. In other words, the anomalies they cause are detected and intervened by monitoring the behaviors exhibited by malware. Various features such as application programming interface (API) calls or system calls, registry modification, and network activities constitute malware behavior. API calls and various statistical information of these calls, extracted by dynamic analysis, are considered one of the most representative features of behavior-based detection systems. Each API call in the sequences is associated with previous or subsequent API calls. Such relationships may contain patterns of destructive functions of malware. Many intrusion/anomaly detection systems are proposed, including machine and deep learning models, in which various information about API/system calls are used as features. This paper aims to evaluate the effect of various statistical information of API calls on the models in detecting anomaly events and classification performances. The anomaly detection performances of various machine learning (ML) models with known effects in the literature are examined using a dataset containing API calls. As a result of the experiments, it is seen that the models using statistical features of API calls have reached high performance in terms of precision, recall, f1-score, and accuracy metrics.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1007/978-3-031-73420-5_25
dc.identifier.endpage309en_US
dc.identifier.isbn9783031734199
dc.identifier.isbn9783031734205
dc.identifier.issn1865-0929
dc.identifier.issn1865-0937
dc.identifier.scopus2-s2.0-85207825540
dc.identifier.scopusqualityQ4
dc.identifier.startpage298en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-031-73420-5_25
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44082
dc.identifier.volume2226en_US
dc.identifier.wosWOS:001436940700025
dc.language.isoenen_US
dc.publisherSpringer International Publishing AGen_US
dc.relation.ispartofCommunications in Computer and Information Scienceen_US
dc.relation.ispartofseriesCommunications in Computer and Information Science
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnomaly Detectionen_US
dc.subjectAPI Callen_US
dc.subjectMachine Learningen_US
dc.subjectDeep Learningen_US
dc.subjectComparative Analysisen_US
dc.titleAnomaly Detection with Machine Learning Models Using API Callsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files