Publication:
Temporal Differential Transform and Spatial Finite Difference Methods for Unsteady Heat Conduction Equations with Anisotropic Diffusivity

dc.authorscopusid56426587000
dc.authorscopusid56259656300
dc.authorwosidÇilingir Süngü, Inci/A-8346-2018
dc.authorwosidCilingir Sungu, Inci/A-8346-2018
dc.contributor.authorSungu, I. Cilingir
dc.contributor.authorDemir, H.
dc.contributor.authorIDCilingir Sungu, Inci/0000-0001-7788-181X
dc.contributor.authorIDDemir, Huseyin/0000-0003-3606-878X
dc.date.accessioned2020-06-21T09:37:37Z
dc.date.available2020-06-21T09:37:37Z
dc.date.issued2014
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sungu, I. Cilingir] Ondokuz Mayis Univ, Educ Fac, Sch Math Educ, Dept Elementary, TR-55139 Samsun, Turkey; [Demir, H.] Ondokuz Mayis Univ, Arts & Sci Fac, Dept Math, TR-55139 Samsun, Turkeyen_US
dc.descriptionCilingir Sungu, Inci/0000-0001-7788-181X; Demir, Huseyin/0000-0003-3606-878Xen_US
dc.description.abstractThree unsteady heat conduction problems with anisotropic diffusivity and time-dependent heating or heat flux and/or heat source are considered in showing the utility of a hybrid method involving a combination of temporal differential transform and spatial finite difference methods. The segregation of time from the spatial component is the greatest advantage of the hybrid method that exhibits no instability of finite difference methods generally seen with parabolic equations. The easy-to-implement algorithm that is essentially a Poisson solver works with both linear and non-linear heat transport problems without any difficulty of sorts. To gain confidence in the results some simulation results are also presented of problems that have an Adomian solution. The method can be used in practical heat transfer problems concerning non-uniform materials like composites, alloys, heterogeneous porous media with thermal equilibrium or non-equilibrium, multi-layered media and such other problems.en_US
dc.description.sponsorshipOndokuzmayis University, Samsun, Turkey [pyo.fen. 1901.13.003]en_US
dc.description.sponsorshipThe authors are thankful to Ondokuzmayis University, Samsun, Turkey, for providing financial support to carry out this work under a major research project (Grant No: pyo.fen. 1901.13.003).en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.endpage1076en_US
dc.identifier.issn2147-1762
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-84911902701
dc.identifier.scopusqualityQ3
dc.identifier.startpage1063en_US
dc.identifier.volume27en_US
dc.identifier.wosWOS:000421177200006
dc.language.isoenen_US
dc.publisherGazi Universityen_US
dc.relation.ispartofGazi University Journal of Scienceen_US
dc.relation.journalGazi University Journal of Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDifferential Transform Methoden_US
dc.subjectFinite-Difference Approximationen_US
dc.subjectHeat Conductionen_US
dc.subjectAnisotropic Diffusivityen_US
dc.subjectTime-Dependent Heatingen_US
dc.titleTemporal Differential Transform and Spatial Finite Difference Methods for Unsteady Heat Conduction Equations with Anisotropic Diffusivityen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files