Publication: Hidrofobik Yüzeylerin Mikrokanallarda Sürtünme Üzerine Etkilerinin Sayısal İncelenmesi
Abstract
Bu tez çalışmasında, yüzeylerinde mikro boyutta ve düzenli yapıda sütun şeklinde pürüz içeren mikrokanalların, kanal yüzeyindeki hidrodinamik sürtünme davranışları sayısal olarak incelenmiştir. Analizler, Ansys Fluent yazılımı ile Volume of Fluid (VOF) modeli seçilerek gerçekleştirilmiştir. Pürüzlerin, sürtünme üzerine etkisi 5 farklı geometrik model tasarlanarak incelenmiştir. Modeller farklı pürüz genişliği ve pürüzler arası boşluk mesafelerinde tasarlanmıştır. Bu yüzeyler için temas açıları 78.04o ile 137.07o arasında ölçülmüştür. Kayma gerilmeleri de 9.76 Pa ile 14.97 Pa aralığında gerçekleşmiştir. Kayma gerilmesi değerinde %34.79 ile en büyük düşüş, kanal iç yüzeyinde en büyük temas açısı değerine sahip olan hidrofobik yüzeyde gerçekleşmiştir. Pürüz yüksekliği 3 µm, 20 µm ve 30 µm olduğu modellerde yüzeylerin sürtünme etkileri incelenmiş ve 20 µm olan modellerde en düşük kayma gerilmelerinin meydana geldiği belirlenmiştir. Pürüzsüz modele göre; kayma gerilmelerinde %12.59 ile %35.12 oranında düşüş gerçekleşmiştir. Pürüzler arası boşluk 5 µm, 10 µm, 20 µm, 30 µm ve 40 µm olduğu modellerde yüzeylerin sürtünme etkileri incelenmiştir. Pürüzsüz modele göre pürüz arası boşluk mesafesinin 10 µm olduğu modelde %38.13 ile en yüksek kayma gerilmesi düşüşü gerçekleşmiştir. Ancak, pürüz genişliğindeki artışın kayma gerilmesini artırdığı ortaya konmuştur. Pürüz genişliği 10 µm, 20 µm ve 30 µm olduğu modellerde yüzeylerin sürtünme etkileri araştırılmıştır. Pürüzsüz yüzeye kıyasla pürüz genişliğinin 10 µm olduğu modelde %34.79 ile en yüksek kayma gerilmesi düşüşü gerçekleşmiştir. Kayma gerilmesi ve yüzey sürtünme faktöründeki en yüksek azalma temas açısının en yüksek değerinde meydana geldiği belirlenmiştir. Dolayısıyla kayma gerilmesi ve sürtünme faktörü temas açısının artması ile önemli ölçüde azaldığı ortaya konulmuştur.
In this thesis study, the hydrodynamic friction behavior of microchannels containing micro-sized and regular column-shaped asperities on their surfaces was numerically investigated. Analyzes were carried out with Ansys Fluent software by selecting the Volume of Fluid (VOF) model. The effect of asperities on friction was examined by designing 5 different geometric models. Models are designed with different asperity widths and inter-asperity gap distances. Contact angles for these surfaces were measured between 78.04o and 137.07o. Shear stresses were between 9.76 Pa and 14.97 Pa. The largest decrease in shear stress value, 34.79%, occurred on the hydrophobic surface, which has the largest contact angle value on the inner surface of the channel. The friction effects of the surfaces were examined in the models with roughness heights of 3 µm, 20 µm, and 30 µm, and it was determined that the lowest shear stresses occurred in the models with 20 µm. According to the smooth model; There was a decrease of 12.59% and 35.12% in shear stresses. The friction effects of the surfaces were examined in the models where the gap between asperities was 5 µm, 10 µm, 20 µm, 30 µm and 40 µm. Compared to the smooth model, the highest shear stress decrease of 38.13% was achieved in the model where the gap distance between asperities was 10 µm. However, it has been shown that the increase in asperity width increases the shear stress. The friction effects of the surfaces were investigated in models with roughness widths of 10 µm, 20 µm, and 30 µm. Compared to the smooth surface, the highest shear stress decrease of 34.79% was achieved in the model where the roughness width was 10 µm. It was determined that the highest decrease in shear stress and surface friction factor occurred at the highest value of the contact angle. Therefore, it has been revealed that shear stress and friction factor decrease significantly with increasing contact angle.
In this thesis study, the hydrodynamic friction behavior of microchannels containing micro-sized and regular column-shaped asperities on their surfaces was numerically investigated. Analyzes were carried out with Ansys Fluent software by selecting the Volume of Fluid (VOF) model. The effect of asperities on friction was examined by designing 5 different geometric models. Models are designed with different asperity widths and inter-asperity gap distances. Contact angles for these surfaces were measured between 78.04o and 137.07o. Shear stresses were between 9.76 Pa and 14.97 Pa. The largest decrease in shear stress value, 34.79%, occurred on the hydrophobic surface, which has the largest contact angle value on the inner surface of the channel. The friction effects of the surfaces were examined in the models with roughness heights of 3 µm, 20 µm, and 30 µm, and it was determined that the lowest shear stresses occurred in the models with 20 µm. According to the smooth model; There was a decrease of 12.59% and 35.12% in shear stresses. The friction effects of the surfaces were examined in the models where the gap between asperities was 5 µm, 10 µm, 20 µm, 30 µm and 40 µm. Compared to the smooth model, the highest shear stress decrease of 38.13% was achieved in the model where the gap distance between asperities was 10 µm. However, it has been shown that the increase in asperity width increases the shear stress. The friction effects of the surfaces were investigated in models with roughness widths of 10 µm, 20 µm, and 30 µm. Compared to the smooth surface, the highest shear stress decrease of 34.79% was achieved in the model where the roughness width was 10 µm. It was determined that the highest decrease in shear stress and surface friction factor occurred at the highest value of the contact angle. Therefore, it has been revealed that shear stress and friction factor decrease significantly with increasing contact angle.
Description
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
130
