Publication:
A New Method for Vulnerability and Risk Assessment of IoT

dc.authorscopusid57212209490
dc.authorscopusid15833929800
dc.authorwosidAkleylek, Sedat/D-2090-2015
dc.authorwosidArat, Ferhat/Izd-6796-2023
dc.contributor.authorArat, Ferhat
dc.contributor.authorAkleylek, Sedat
dc.contributor.authorIDArat, Ferhat/0000-0002-4347-0016
dc.contributor.authorIDAkleylek, Sedat/0000-0001-7005-6489
dc.date.accessioned2025-12-11T01:13:26Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Arat, Ferhat] Samsun Univ, Dept Software Engn, Samsun, Turkiye; [Akleylek, Sedat] Ondokuz Mayis Univ, Dept Comp Engn, Samsun, Turkiye; [Akleylek, Sedat] Ondokuz Mayis Univ, Cyber Secur & Informat Technol Res & Dev Ctr, Samsun, Turkiye; [Akleylek, Sedat] Univ Tartu, Tartu, Estoniaen_US
dc.descriptionArat, Ferhat/0000-0002-4347-0016; Akleylek, Sedat/0000-0001-7005-6489;en_US
dc.description.abstractIn this paper, we propose a generic vulnerability and risk assessment method for IoT-enabled systems. The main aim is to provide risk detection and vulnerability assessment for IoT-based systems. We present three phases of risk assessment methodology: graph construction, attack path detection, and attack path filtering for high-level attack paths. We give attack path detection, risk level computing, and attack path removing procedures to validate these phases. We represent the IoT-based network as a graphical structure. Then, we construct the topology for a given IoT-based system. The smart home system is considered as a case scenario to present a realistic instance. The National Vulnerability Database (NVD), Common Vulnerability Scoring System (CVSS), and Common Vulnerability Exposures (CVE) metrics are used to assign vulnerabilities to devices. We formulate risk factors to compute risk levels for each node, attack path, and entire graph. We use the modified Depth First Algorithm (DFS) to find all attack paths for a source and target nodes. In addition, we compute risk levels using computing procedures. Further, we filter detected attack paths considering dominance level using computational metrics. We perform the simulation on a custom Python simulator considering the designed IoT-based smart home system. We compare our proposed methods with the state of the art. According to the experimental results, the proposed methods outperform existing vulnerability-based risk assessment models regarding running time complexity and operational cost.en_US
dc.description.sponsorshipASELSAN, Turkeyen_US
dc.description.sponsorshipAcknowledgments This study was partially supported by ASELSAN, Turkey.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.comnet.2023.110046
dc.identifier.issn1389-1286
dc.identifier.issn1872-7069
dc.identifier.scopus2-s2.0-85173630028
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.comnet.2023.110046
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42117
dc.identifier.volume237en_US
dc.identifier.wosWOS:001088307200001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputer Networksen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIoT Securityen_US
dc.subjectRisk and Vulnerability Assessmenten_US
dc.subjectCyber Securityen_US
dc.subjectAttack Graphen_US
dc.subjectThreat Assessmenten_US
dc.titleA New Method for Vulnerability and Risk Assessment of IoTen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files