Publication:
Motion Tracking With Kalman Filter Prediction and Measurement Update for Robust Position Estimation

dc.authorscopusid60102667900
dc.authorscopusid57218830659
dc.authorscopusid24474284100
dc.authorwosidSaif, Eiad/Aak-4944-2021
dc.contributor.authorChame, Ridha
dc.contributor.authorSaif, Eiad
dc.contributor.authorErgun, Erhan
dc.date.accessioned2025-12-11T00:40:35Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Chame, Ridha; Ergun, Erhan] Ondokuz Mayis Univ, Dept Comp Engn, Samsun, Turkiye; [Saif, Eiad] Sanaa Community Coll, Dept Comp & Elect Engn, Sanaa, Yemenen_US
dc.description.abstractThis paper presents a robust framework for real-time motion tracking using a classical linear Kalman Filter (KF) to predict moving object positions in subsequent video frames. Object tracking constitutes a fundamental task in autonomous systems, robotics, surveillance, and industrial automation applications. Conventional image processing techniques, however, often yield noisy measurements due to motion blur, low illumination conditions, and dynamic background interference. The proposed approach integrates KF into standard image processing to reduce uncertainty in these measurements and improve the accuracy of position prediction. The methodology includes the theoretical fundamentals of Kalman filtering, including state space formulation, measurement, modeling, and recursive predictive update mechanisms. Experimental assessments under various difficult conditions demonstrate a statistically significant reduction in processing error (P <0.05) and an improved robustness compared to the basic line method. Improved arithmetic efficiency and framework accuracy demonstrate broad applicability in visual-based tracking systems in several domains.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1109/eSmarTA66764.2025.11132123
dc.identifier.endpage455en_US
dc.identifier.isbn9798331585204
dc.identifier.isbn9798331585198
dc.identifier.scopus2-s2.0-105016252087
dc.identifier.startpage450en_US
dc.identifier.urihttps://doi.org/10.1109/eSmarTA66764.2025.11132123
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38362
dc.identifier.wosWOS:001575216600061
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof5th International Conference on Emerging Smart Technologies and Applications-eSmarTA -- Aug 05-06, 2025 -- Ibb, Yemenen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectKalman Filteren_US
dc.subjectObject Trackingen_US
dc.subjectImage Processingen_US
dc.subjectState-Space Modelen_US
dc.subjectPredictionen_US
dc.subjectReal-Time Systemsen_US
dc.titleMotion Tracking With Kalman Filter Prediction and Measurement Update for Robust Position Estimationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files