Publication:
Zero-Inflated Regression Models for Modeling the Effect of Air Pollutants on Hospital Admissions

dc.authorscopusid12766595200
dc.contributor.authorCengiz, M.A.
dc.date.accessioned2020-06-21T14:28:44Z
dc.date.available2020-06-21T14:28:44Z
dc.date.issued2012
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cengiz] Mehmet Ali, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractCount regression methods are the fundamental tool used for modeling the association between environmental pollution and hospital admissions. Data with many zeros are often encountered in count regression models. Failure to account for the extra zeros may result in biased parameter estimates and misleading inferences. Zero-inflated Poisson and zero-inflated negative binomial regression models have been proposed for situations where the data generating process results in too many zeros.en_US
dc.identifier.endpage568en_US
dc.identifier.issn1230-1485
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-84861157474
dc.identifier.scopusqualityQ3
dc.identifier.startpage565en_US
dc.identifier.volume21en_US
dc.identifier.wosWOS:000304430500006
dc.identifier.wosqualityQ4
dc.institutionauthorCengiz, M.A.
dc.language.isoenen_US
dc.publisherHarden_US
dc.relation.ispartofPolish Journal of Environmental Studiesen_US
dc.relation.journalPolish Journal of Environmental Studiesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAir Pollutionen_US
dc.subjectCount Regressionen_US
dc.subjectZero-Inflated Modelsen_US
dc.titleZero-Inflated Regression Models for Modeling the Effect of Air Pollutants on Hospital Admissionsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files