Publication:
A Probabilistic Scenario Generation Framework for Optimal Decision Making in Turkish Renewable Energy Market

dc.authorscopusid55005950400
dc.authorscopusid57226125935
dc.authorscopusid57202674406
dc.contributor.authorSildir, H.
dc.contributor.authorAkulker, H.
dc.contributor.authorAydin, E.
dc.date.accessioned2025-12-11T00:28:16Z
dc.date.issued2021
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sildir] Hasan, Department of Chemical Engineering, Gebze Teknik Üniversitesi, Gebze, Kocaeli, Turkey; [Akulker] Handan, Department of Chemical Engineering, Boğaziçi Üniversitesi, Bebek, Istanbul, Turkey, Department of Chemical Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Aydin] Erdal, Department of Chemical Engineering, Boğaziçi Üniversitesi, Bebek, Istanbul, Turkeyen_US
dc.description.abstractTurkey is one of the richest countries in terms of renewable energy resources. At the same time, the largest portion of the account deficit of Turkey is due to energy import. Optimization studies for design, integration and management of renewable energy is therefore crucial in terms of increasing overall energy efficiency. In addition, energy sources and demands in Turkey have significant uncertainty and meeting the market conditions in a profitable manner is a challenging task. Stochastic programming is an efficient approach to deal with the aforementioned challenge. It requires introducing representative and comprehensive scenarios for the optimal design and scheduling. In this study, the aim is to propose a systematic and generic scenario generation method which is compatible with historical data, dependable for forecasts, and easily tunable for the scenario likelihood. Main contributions of this work are as follows: The uncertainty in the model parameters are propagated to the forecasts to obtain prediction intervals under a desired confidence, which provides probabilities of each scenario over the whole time horizon with predetermined likelihood the generated scenario set (e.g., likely, rare or statistically very low probability). Thus, scenario reduction is not needed. We implemented our method for Yalova, a developing city in Turkey, for the scenario generation of wind speed, population, air temperature, electricity consumption and solar irradiance, with a prediction horizon of 20 years. We also developed a preliminary mixed-integer linear programming (MILP) decision making model which computes both the optimal equipment investments and the optimal sub-hourly scheduling sequences of the equipment based on these scenarios and economic considerations. © 2021 Elsevier B.V.en_US
dc.identifier.doi10.1016/B978-0-323-88506-5.50218-7
dc.identifier.endpage1420en_US
dc.identifier.isbn9780444522177
dc.identifier.isbn9780444636836
dc.identifier.isbn9780444639646
dc.identifier.isbn9780444534330
dc.identifier.isbn9780444531575
dc.identifier.isbn9780444642356
dc.identifier.isbn9780444532275
dc.identifier.isbn9780444634283
dc.identifier.issn1570-7946
dc.identifier.scopus2-s2.0-85110441626
dc.identifier.scopusqualityQ4
dc.identifier.startpage1415en_US
dc.identifier.urihttps://doi.org/10.1016/B978-0-323-88506-5.50218-7
dc.identifier.urihttps://hdl.handle.net/20.500.12712/36515
dc.identifier.volume50en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofComputer Aided Chemical Engineeringen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnergy Systems Integrationen_US
dc.subjectMixed-Integer Linear Programmingen_US
dc.subjectRenewable Energyen_US
dc.subjectScenario Generationen_US
dc.subjectStochastic Programmingen_US
dc.titleA Probabilistic Scenario Generation Framework for Optimal Decision Making in Turkish Renewable Energy Marketen_US
dc.typeBook Parten_US
dspace.entity.typePublication

Files