Publication:
On the Efficiency of Polynomial Multiplication for Lattice-Based Cryptography on GPUs Using CUDA

dc.authorscopusid15833929800
dc.authorscopusid36175412600
dc.authorscopusid56247050200
dc.contributor.authorAkleylek, S.
dc.contributor.authorDagdelen, Ö.
dc.contributor.authorTok, Z.Y.
dc.date.accessioned2020-06-21T09:42:50Z
dc.date.available2020-06-21T09:42:50Z
dc.date.issued2016
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Akleylek] Sedat, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey, Cryptography and Computer Algebra Group, Technische Universität Darmstadt, Darmstadt, Hessen, Germany; [Dagdelen] Özgür, BridgingIT GmbH, Mannheim, Baden-Wurttemberg, Germany; [Tok] Zaliha Yüce, Institute of Applied Mathematics, Middle East Technical University (METU), Ankara, Ankara, Turkeyen_US
dc.description.abstractPolynomial multiplication is the most time-consuming part of cryptographic schemes whose security is based on ideal lattices. Thus, any efficiency improvement on this building block has great impact on the practicability of lattice-based cryptography. In this work, we investigate several algorithms for polynomial multiplication on a graphical processing unit (GPU), and implement them in both serial and parallel way on the GPU using the compute unified device architecture (CUDA) platform. Moreover, we focus on the quotient ring (ℤ/pℤ) [x]/(xn + 1), where p is a prime number and n is a power of 2. We stress that this ring constitutes the most common setting in lattice-based cryptography for efficiency reasons. As an application we integrate the different implementations of polynomial multiplications into a lattice-based signature scheme proposed by Güneysu et al. (CHES 2012) and identify which algorithm is the preferable choice with respect to the ring of degree n. © Springer International Publishing Switzerland 2016.en_US
dc.identifier.doi10.1007/978-3-319-29172-7_10
dc.identifier.endpage168en_US
dc.identifier.isbn9789819698936
dc.identifier.isbn9789819698042
dc.identifier.isbn9789819698110
dc.identifier.isbn9789819698905
dc.identifier.isbn9783032004949
dc.identifier.isbn9789819512324
dc.identifier.isbn9783032026019
dc.identifier.isbn9783032008909
dc.identifier.isbn9783031915802
dc.identifier.isbn9789819698141
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-84955470297
dc.identifier.scopusqualityQ3
dc.identifier.startpage155en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-319-29172-7_10
dc.identifier.volume9540en_US
dc.language.isoenen_US
dc.publisherSpringer Verlag service@springer.deen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.relation.journalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCUDA Platformen_US
dc.subjectCUFFTen_US
dc.subjectFast Fourier Transformen_US
dc.subjectGPU Implementationen_US
dc.subjectLattice-Based Cryptographyen_US
dc.subjectNTTen_US
dc.subjectPolynomial Multiplicationen_US
dc.subjectSchönhage-Strassenen_US
dc.titleOn the Efficiency of Polynomial Multiplication for Lattice-Based Cryptography on GPUs Using CUDAen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files