Publication:
Simulation-Based Life-Cycle Structural Reliability of Deteriorating RC Bridges Using Bayesian Updating

dc.authorscopusid57224684510
dc.authorscopusid57211567366
dc.authorscopusid57192203352
dc.authorscopusid6602613840
dc.contributor.authorYilmaz, M.F.
dc.contributor.authorAnghileri, M.
dc.contributor.authorCapacci, L.
dc.contributor.authorBiondini, F.
dc.date.accessioned2025-12-11T00:30:19Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Yilmaz] Mehmet F., Department of Civil Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Anghileri] Mattia, Department of Civil & Environmental Engineering, Politecnico di Milano, Milan, MI, Italy; [Capacci] Luca, Department of Civil & Environmental Engineering, Politecnico di Milano, Milan, MI, Italy; [Biondini] Fabio, Department of Civil & Environmental Engineering, Politecnico di Milano, Milan, MI, Italyen_US
dc.description.abstractThe development of transportation infrastructure systems is an essential part of modern civilization. Any functional deficiency of these systems may cause severe economic losses and social distress. Bridges are among the most vulnerable components of transportation networks. They are exposed to several deterioration processes and traffic loading scenarios during their service life, exacerbating the significant uncertainties on the life-cycle prediction of their structural response. Structural Health Monitoring (SHM) measurements can give significant information and support the damage detection of aging bridges, reducing the uncertainties associated to the structural performance and improving structural reliability of deteriorating systems. This paper presents a life-cycle probabilistic approach to incorporate SHM measurements via Bayesian updating in simulation-based reliability assessment of deteriorating bridges. The proposed methodology is applied to reinforced concrete (RC) bridges exposed to corrosion. The uncertainties of the corrosion model are updated based on SHM data. The Metropolis-Hastings (MH) algorithm is used to update the statistical parameters of the deterioration damage index at the prescribed observation time. The application to time-variant reliability assessment of a RC box-girder continuous bridge under corrosion shows the benefits of SHM to improve the accuracy of life-cycle prediction models. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.identifier.doi10.1007/978-3-030-91877-4_156
dc.identifier.endpage1376en_US
dc.identifier.isbn9789819620951
dc.identifier.isbn9783031976889
dc.identifier.isbn9789819679706
dc.identifier.isbn9789819677986
dc.identifier.isbn9783031951145
dc.identifier.isbn9789819685356
dc.identifier.isbn9789819674879
dc.identifier.isbn9789819688333
dc.identifier.isbn9789819616053
dc.identifier.isbn9783031988929
dc.identifier.issn2366-2557
dc.identifier.issn2366-2565
dc.identifier.scopus2-s2.0-85121919447
dc.identifier.scopusqualityQ4
dc.identifier.startpage1368en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-91877-4_156
dc.identifier.urihttps://hdl.handle.net/20.500.12712/36902
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Civil Engineeringen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBayesian Updateen_US
dc.subjectDeteriorating Bridgesen_US
dc.subjectLife-Cycle Assessmenten_US
dc.subjectMetropolis-Hastings Algorithmen_US
dc.subjectMonte Carlo Simulationen_US
dc.subjectStructural Reliabilityen_US
dc.titleSimulation-Based Life-Cycle Structural Reliability of Deteriorating RC Bridges Using Bayesian Updatingen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files